ISSN: 2437-1114 www.aljest.org

The hydrochemical characterization of the underground waters of the plain of Sidi Bel Abbès (northwestern Algeria).

A.El-M Bellaredj*, M Hamidi

Faculty of Earth and Universe Sciences, University of Oran 2 Mohamed Ben Ahmed, BP1015, El M'naouer 31000, Oran, Algeria.

*Corresponding author: bellaredj_mehdi@yahoo.fr; Tel.: +2130552 61 26 55

ARTICLE INFO

Article History:

Received : 17/10/2017 Accepted : 28/03/2018

Key Words:

Plio-Quaternary aquifer,
Mekerra river, salinity,
anthropogenic activities,
evaporation, water/rock
interactions

ABSTRACT/RESUME

Abstract: The population of Sidi Bel Abbèshas become over the years moredependent on the neighboring cities of Tlemcen and Mascara to satisfy its growing needs of potable water. The absence of dams with big storage capacity combined with the semi-arid climate characterizing this region (irregular andlow to medium rainfall rates) is superposed tothe poor knowledge of the underground waters potential inthearea. The Plio-Quaternary aquiferof the Sidi Bel Abbèsplain can however be considered an exception. This unconfined aguifer, whichstretches over 800 km² is by far the most important underground water reservoir in the region. The aquifer is mainly drained by the Mekerra River and is exploited by an impressive number of pumping wells (legal and illegal), destined for their majority to irrigation. The strategic importance of this water resource for the city of Sidi Bel Abbès is thus, immense and its characterization both qualitatively and quantitatively vital. Thehydrochemical study of the Plio-Quaternary aguifer waters shows that they vary from fresh (Total Dissolved Solid < 1 g/l) to extremely saline (Total Dissolved Solid >5 g/l) waters. The results demonstrate that the salinity of the Plio-Quaternary aquifer waters is derived from the combination of a multitude of processes. The anthropogenic activities materialize in the contamination of the aquifer's waters, both directly by the polluted (industrial and domestic water wastes) of the Mekerrariverandseptic fosses (absence/weak coverage of sanitization networks) and indirectly due to the extensive usage of fertilizers and pesticides in farming, which reach by soils leaching the aquifer, during the rainy and irrigation seasons. The hydrochemical results illustratethe important contribution of the evaporation in the salinization process of the Plio-Quaternary aguifer waters, especially East and North of the plain of Sidi Bel Abbes where the aquifer is shallow and its section and thickness small. They also emphasize the major role of the water/rock interaction (dissolution of carbonates, ion exchange processes and silicates weathering) and its influence on the salinity, hardness and geochemical facies of the Plio-Quaternary aquifer waters.

I. Introduction

Despite the efforts made by the country over the last years, Algeria will face a deficit of 1 billion m³ by the Horizon of 2025; the city of Sidi Bel Abbès

(SBA) (Fig. 1) is a perfect example to illustrate this alarming situation. The city's potential in terms of surface waters is derisory and the majority of its

potable water supplies comes from the Dams of SidiAbdelli (Tlemcen) and Bouhanifia (Mascara), the sea water desalinization station of Tlemcenand the pumping wells exploiting the Plio-Quaternary aquifer (PQA) and those adjacent. The city of SBA rises on both sides of the Mekerra river; 430 km WSW of the capital Algiers. It shelters one of the most fertile plain of the country, which occupies a surface of about 1150 km²at an altitude varying from 500 to 700 m. The plain has a semi-arid climate; humid and cold during the winter and dry and hot in the summer whereas the spring and autumnal periods are almost imperceptible.

Figure 1: General localization of the city of SBA, Algeria.

The plain of SBA (Fig 2) is a large basin that rest on top of a Mio-Pliocene substratum formed by gray green clays and marls. The plain is surrounded by terrains with great disparity; in the North, the Tessala Mountains are essentially made of Cretaceous formations, roofed by a thick Tertiary cover (Sourisseau, 1973 [1]);in the South, the Tlemcen-Saïda mountains are represented by materials of the Midddle/Superior Jurassic and the Inferior/Middle Cretaceous; on the Western Border, the Helvetian Marl hills separate the basins of the Isser and Mekerra rivers; to the East, the plain is limited by the Miocene Marl series of BouHenifia (city of Mascara).

As mentioned previously, the plain of SBA is hydro-geologically poorly documented. The only relatively complete survey found in the bibliography is the one conducted by Sourisseau in the early 70s. Currently, the plain only beneficiates of a non periodic follow up done by the ANRH of Oran (AgenceNationale des RessourcesHydrique, National Agency of water resources) on the water table and the salinity of the PQA. The SBA plain hosts five aquifers (Fig. 3):

The Limestones of Zigyne: A small aquifer East of the plain near CaïdBelarbi formed essentially of Limestones form the Aptian.

The Dolomite rocks and Llimestones of Sidi Ali Benyoub: due to the abundance of faults in the Jurassic Cretaceous formations (the Limestones of Remaïla and the Dolomitic Limestones of Tlemcen), they are considered a one sole aquifer horizon. The latter is mostly present in the South of the plain and

communicates with the PQA either by lateral infiltration or through springs such as AïnSkhrouna and AïnMekarreg.

The Pliocene Sandstones of Ténira: this unit is comprised of Conglomerates from the continental Pliocene at the base, surmounted by sandy Sandstones, sometimes silty or clayey. The main importance of this formation resides in the fact that it contributes greatly to the recharge of the PQA.

The Plio-Quaternary alluviums: this aquifer is unconfined, formed of heterogeneous alluviums and Conglomerates along the rivers Tissaf and Mekerra and rests on top of a blue Marls substratum (sometimes sandy) of the marine Pliocene. Its recharge is done by precipitations, adjacent aquifers or infiltration by the rivers beds. The principle outlet of the PQA is located in the « Rocher » district; North of the city of SBA, where the Mekerra river drains most of the aquifer's waters.

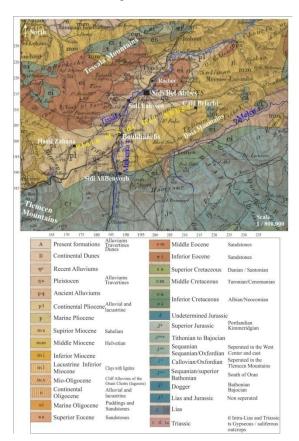


Figure 2. Geologic map of the plain of SBA. Extract of the geologic map of Algeria, third edition, Ministry of public works.

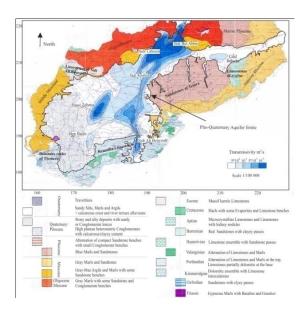


Figure 3. Hydrogeologic map of the plain of SBA (K. Achi, A. Salem and F. Caquel&F. Zwahlen, 1974, based on the work of B. Sourisseau, P. Bonnet, S. Ramon with the collaboration of P. Combs and J. Leroux).

II. Materials and methods

II.1. Sampling Locations

Due to the scarcity of recent data (less than 15 sampleswereanalyzedyearlyin the plain of SBA since 2008 and less than 10 are analyzed since 2010) compared to the aquifer extent (800 Km²), samples utilized in this study are relative to the May/1989 campaignundertaken by the ANRH that concerned over 70 sites; all the samples were analyzed at the aforementioned agency's laboratory.50 samples whose percent charge balance errors were inferior to 5% were retained for the hydrochemical characterization of the PQA waters (Fig. 4).

II.2. Methods

The conventional methods based on the different diagrams, graphics and classifications, in addition to the statistical approach are utilized in the hydrochemical characterization of the PQA waters.

The study of the salinity is based on the different Total Dissolved Solid (TDS) and Electric Conductivity (EC) classifications, The Total Hardness (TH) of the PQA waters is calculated in $CaCO_3$ (mg/l) and converted to French degrees (F°).

The different geological facies are identified based on the Piper [2] and Chadha (1999) [3] Diagrams and the geochemical classifications of Durov's (1948) [4], Souline (1946-1948) [5, 6] and Schoeller (1951) [7].

The multivariate statistical analysis of the PQA waters is done by PCA (Principal Component Analysis); a method widely used in the chemical studies of underground waters.

The general mechanisms and processes controlling the salinity and affecting the chemical quality of the PQA waters are determined by the Gibbs diagram (1970) [8] and the study of the different chemical elements relations.

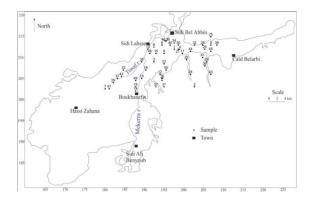


Figure 4. Study area and sampling sites

III. Results and discussion

III.1. Physical and chemical parameters

Appendix 1, shows that the majority of the samples have TDS values superior to 1g/l. According to the classifications of Robinove et al (1958) [9] and Heath (1983) [10], 30 samples are slightly saline and 20 moderately saline. According to Davis (1964) [11], however, they are all briny.

The salinity of the waters is clearly reflected by the high values of their Electric Conductivity (CE). In fact, based on the classifications of Potelon&Zysman (1993) [12] and Rodier (2005) [13], all the samples have an excessive salinity.

Fig. 5 represents the spatial distribution of the waters TDS means between 1970 and 2006. It shows that the augmentation of the waters salinity does not follow a defined preferential direction. However, it appears that the lowest salinity values (< 1g/l) are observedSouth of Ben Badis (zone scarsely populated with no industrial activity); the slightly saline waters (1 to 2 g/l) are represented by the samples North of HassiZahana (waters infiltrating the POA from the Limestones of Sidi Ali boussidi). those between Lamtar and Ben Badis (presence of gravelly materials and some conglomerates along the Bedrabine affluent coupled with more important hydraulic gradients) and those along the Mekerra river (channel conglomerates up to 50 m thick near Sidi Khaled); the high TDS concentrations (> 3g/l) are on the other hand located in the NE, between SBA (most populated and active area) and Belarbi (where the section, depth and thickness of the PQA are the least important).

The predominant ions in the PQA waters are the Chlorides for the anions and the Sodium for the cations. The chlorides (along with the EC) are a key element in any study relative to waters salinity. In the SBA plain, the elevated chlorides concentrations are responsible for the high TDS values. Most samples have Cl concentrations that oscillate between 1 and 2.5 g/l. These high concentrations in Cl are attributed mostly to pollution (sewage), the dissolution of Sodium chloride and to a lesser degree to the weather (aerosols).

The mean concentrations of nitrates from 1970 to 2006 in the study area are in their majority inferior to 50 mg/l (World Health Organization (WHO) norms); only 4 samples present nitrates concentrations superior to 100 mg/l. When the oxygen is depleted, microorganisms fall back on the nitrates and the milieu passes from an oxidant environment to a reducing one; a passage commonly known as the nitrate front (anoxic zone). During the nitrification process, the ammonium is firstly oxidized to nitrites, which in turn will be transformed to nitrates as the redox reactions progress.

$$2NH_{4(aq)}^{+} + 3O_{2(aq)} \rightarrow 2NO_{2(aq)}^{-} + 2H_{2}O_{(l)} + 4H_{(aq)}^{+}$$
$$2NO_{2(aq)}^{-} + O_{2(aq)} \rightarrow NO_{3(aq)}^{-}$$

Figure 5. Spatial distribution of the mean TDS values of the PQA waters (ANRH, 1970 - 2006).

Tableau 1. WHO normscompared to the concentrations of the PQA waters.

	v ~								
	Concentrations (mg/l)								
Parameters	Desired	Number	umber Max						
		of	accepted	of					
		samples		samples					
Ca	75	0	200	12					
Mg	50	7	150	30					
Na	200	10	200	10					
Cl	200	1	600	8					
SO_4	200	29	500	46					
NO_3	45	14	50	19					
TDS	500	0	1500	5					
TH	100	-	500	-					

It appears from Table 1, that the SO_4 concentrations are the ones respecting the most the WHO norms. This could be the result of their reduction or the low presence of SO_4 sources in the study area. Conversely, the Cl ions abundance clearly affects the PQA waters chemical quality for both domestic and agricultural uses.

III.2.Hardness

The total hardness of the PQA waters is calculated using the following equation (Todd, 1980 [14]; Hem, 1985 [15]; Ragunath, 1987 [16]):

 $TH = 2.497 \; Ca + 4.115 \; Mg \qquad \quad , \; \; where \\ all \; concentrations \; are \; expressed \; in \; meq/l.$

Tableau 2. Total Hardness of the PQA waters.

TH (CaCO ₃ in	Water type	Number	of
mg/l)		samples	
< 75	Soft	26	
75 - 150	Moderately soft	20	
150 - 300	Hard	4	
> 300	Very hard	0	

According to Sawyer &McCarty (1967) [17] and Vasanthavigare (2010) [18] (Table 2), only 26 out of the 50 samples are soft. Conversely, based on the classification of Berne and Cordonnier (1991) [19], the majority of the samples (46) are soft with TH values $<15\,^{\circ}F$.

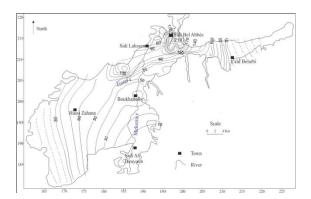
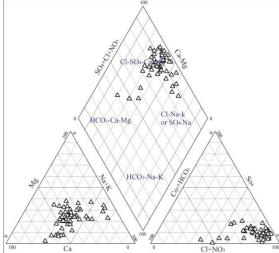


Figure 6.TH (CaCO3en mg/l) spatial evolution of the PQA waters.


From Fig. 6, it appears that the waters hardness increases as they flow towards the system outlet in the North. The low TH values in the center of the plain are the result of the quick circulation of the waters in the conglomerate channels present along the river Mekerra, which does not favor water/rock interactions sufficiently long enough to dissolve important quantities of Ca and Mg. The low TH values observed near the western and eastern limits

of the Plio-Quaternary Alluviums correspond to the recharge zones of the aquifer; respectively, the Limestones of Zigyne and the Pliocene Sandstones of Ténira (see Fig. 3)

III.3.Geochemestry

The projection of the samples on the Piper Diagram [2] (Fig. 7), shows that the majority belongs to the Cl-SO₄-Ca-Mg type waters.

Figure 7.Projection of the PQA waters on the Piper Diagram.

From the Chadha diagram (1999) [3] (Fig. 8), the majority of the samples represent the Cl-Ca-Mg type waters in which, Alkaline earths and weak acidic anions exceed respectively Alkali metals and strong acidic anions. The Cl-Ca-Mg type waters have a permanent hardness and do not deposit residual sodium carbonate when used for irrigation (Chadha, 1999) [3].

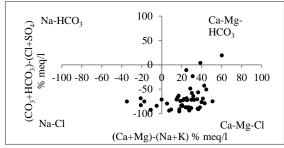


Figure 8. Projection of the PQA waters on the Chadha Diagram.

From the Ludwig-Langelierdiagram (1942) [20] (Fig. 9), all the samples are close to the Y axis; the majority (41 samples) plotted in the upper left corner of the diagram, with (Cl+SO₄) percentiles between 40 and 50 %. These characteristics are generally

linked to recent (short transit period) waters, with an alkali (Na+K) alkaline (Ca+Mg) equilibrium (the mean (Na+K) / (Ca+Mg) ratio of the PQA waters is approximately equal to 0.7).

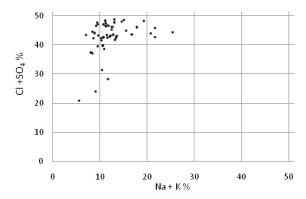


Figure 9. Projection of the PQA samples on the Ludwig-Langelier diagram (1942).

Based on Durov's (1948) [4], classification, 49 samples belong to the Cl waters class (the result of evaporation in closed basins), whereas the one sample left to the secondary waters class (TDS: 500 to 1000 mg/l and rMg / rCa: 0.3 to 0.7 meq/l).

According to Souline (1946, 1948) [5, 6] the 50 samples are subdivided between the Ca-Cl waters class (36 samples: rNa<rCl and rCl – rNa>rMg) and the Mg-Cl waters class (14 samples: rNa<rCl and rCl – rNa<rMg).

All waters in their concentration process, either due to evaporation or dissolution, tend to acquire a chemical composition converging towards the same water type. This results from the solubility differences existing between the mineral salts, which increases as follow:HCO₃,SO₄,Cl (only NaHCO₃and Na₂CO₃ have a solubility out this order). Thus, all waters generally converge towards the sequence: rCl> rSO₄> rHCO₃and rNa>rMg>rCa.

In the arid regions, this sequence will frequently be encountered in the highly concentrated waters (Schoeller, 1934) [21].Based on the chloro-alkaline indexes, Schoeller (1951) [7], distinguishes two types of waters: waters converging towards the rCl-rNa - rK< 0 type: waters characteristic of rivers, lakes, closed basins, underground waters flowing in crystalline rocks and aquifers in the arid regions.

Waters converging towards the rCl - rNa - rK> 0 type: waters similar to sea water: waters included in recent marine sediments and underground waters with very high concentrations; all 50 samples of the PQA converge towards this type.

The different classifications illustrate that PQA waters are mainly Cl-type, rich in sodium, calcium and magnesium, with a medium to strong salinity and low to high Hardness. These characteristics are

generally the result ofion exchange processes and /or the mixture of fresh waters with others more saline (Adams et al, 2001) [22].

III.4.Statistics (PCA)

The biggest standard deviation values are relative to the Cl ions and the EC, whichillustrates their great dispersion and their inconsistent spatial evolution [23]. The best physical / chemical parameters correlations are noted between the EC and the Na-Cl ions, confirming the huge contribution of the two elements to the salinity of the aquifer's waters.

The good positive correlations (Table 3) of the EC with the Ca, Mg, SO₄, Na and Cl indicate that all these elements contribute to the salinity of the PQA waters. The relatively good correlation of the Ca and SO₄ (0.639) suggests the dissolution of gypsum. A dissolution, not very important in the study area as shown by the SO_4 concentrations (Log SO_4), all < 10mmol/l. The weathering of silicates, the dissolution of carbonates and the ion exchange processes can commonly explain the good correlations of the Mg, Cl and Na in saline ground waters. The best positive correlations are noted between the Cl, Na and SO₄. They are the result of the dissolution of evaporites and intense anthropogenic activities (industrial and domestic water wastes, fertilizers and pesticides). The low correlation of the SO₄ with the NO₃ reveal the depletion of the two elements via redox reactions.

Tableau 3. Ccorrelation matrix of the PQA waters.

Variables	Ca	Mg	Na	K	
Ca	1				
Mg	0.339	1			
Na	0.536	0.829	1		
K	0.365	0.525	0.479	1	
Cl	0.784	0.822	0.904	0.532	
SO_4	0.639	0.614	0.868	0.437	
NO_3	0.518	0.315	0.286	0.153	
HCO_3	-0.570	-0.150	-0.107	-0.144	
EC	0.761	0.810	0.943	0.527	
Variables	Cl	SO_4	NO_3	HCO ₃	EC
Variables Ca	Cl	SO ₄	NO ₃	HCO ₃	EC
-	Cl	SO ₄	NO ₃	HCO ₃	EC
Ca	Cl	SO ₄	NO ₃	HCO ₃	EC
Ca Mg	Cl	SO ₄	NO ₃	HCO ₃	EC
Ca Mg Na	Cl 1	SO ₄	NO ₃	HCO ₃	EC
Ca Mg Na K		SO ₄	NO ₃	HCO ₃	EC
Ca Mg Na K Cl	1		NO ₃	HCO ₃	EC
Ca Mg Na K Cl SO ₄	1 0.814	1 0.345		HCO ₃	EC

Two factors (Table 4) explaining more than 75% ofthe total variance of the original data setare extracted. Factor 1 accounts for 61.64 % of the total variance with respective positivecorrelations with the EC, Cl, Na, SO₄, Mg and Ca; strongly suggesting that these variables have common patterns. Thus, Factor 1 represents a salinization trend acquired probablyby the dissolution of carbonate rocks, evaporites, ions exchange processes and pollution. Factor 2 explains 15.2 % of the variance; 42% of which represented by the HCO₃. This factor is mainly attributed to the dissolution of carbonates (carbonates elements of the conglomerate channels), the redox reactions (reducing milieu) and the silicates weathering processes.

Tableau 4. Correlations factors/variables

	F1	F2
Ca	0.778	-0.464
Mg	0.811	0.327
Na	0.909	0.325
K	0.594	0.227
Cl	0.984	0.003
SO_4	0.868	0.161
NO_3	0.509	-0.517
HCO_3	-0.383	0.767
EC	0.988	0.081

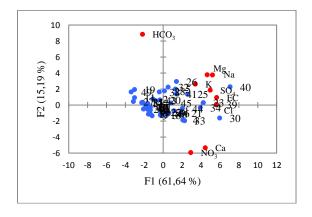


Figure 10. PCA biplot of the variables and the individuals of the PQA waters.

Based on the PCA results (Fig. 10), we can classify the 50 samples in two big groups (Table 5). The first contains 27 samples and represents the fresh to moderately saline waters. These waters are mainly found near the recharge areas (the Sandstones of Tenira) and along the rivers Tissaf and Mekkera, where the circulation speeds are, considerable (conglomerates channels). The salinity of these waters is derived principally from the dissolution of carbonates; ions exchange processes and the weathering of silicates. The second group represents

the saline to extremely saline waters, corresponding to the city of SBA and it vicinity (most populated and active area) and the region East of the plain (CaïdBelarbi), where the effects of the evapotranspiration are maximum due to the closeness of the water table to the surface and the smallness of the PQA section. The high concentrations characterizing these waters are mainly the result of anthropogenic activities (agriculture, industry and domestic wastes).

Tableau 5. Classification of PQA waters based on the PCA results.

		Group 1	Group 2			
	Relatively	Slightly	Moderately	Saline	Extremely	
	Fresh	saline	saline		saline	
Number of samples	5	14	8	14	6	
TDS mean (mg/l)	1159	1781	2279	3337	4693	

The salinity of the samples 30, 39 and 40(TDS mean = 7259 mg/l) is considered an abnormality and could represent punctual pollution points.

III.5. Salinity origins of the Plio-Quaternary aquifer waters

The sources and mechanisms responsible for the salinization of waters are related to both, natural processes and to those triggeredby human activity. Often, a multitude of thesesources and mechanisms are found superposed, especially in complex situations.

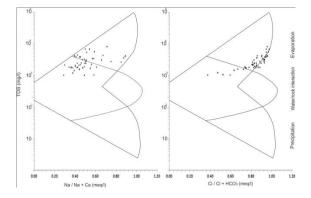


Figure 10. PCA biplot of the variables and the individuals of the POA waters.

Fig. 11 depicts the projection of the PQA samples on the Gibbs diagram (1970) [8]. The latter is commonly utilized in the identification of the relationships existing between the underground waters and their aquifers lithology and consequently, the mechanisms controlling their chemistry (Feth and Gibbs, 1971 [24]; Wanty et al, 2009 [25];

Mamatha and Sudhakar, 2010 [26]; Bellaredj, 2013 [23]).

Out of the 50 samples, 30 have a ratio Na / (Na + Ca) < 0.5 and TDS values relatively low; suggesting that the water/rock interaction is the dominant mechanism controlling the chemistry of these waters (Wang and al). The 20 samples left have aratioNa / (Na + Ca) > 0.5 and high TDS values and owe their salinity to the evaporation process. The cationic exchange can also be considered an important factor to explain the predominance of the Na (Na / (Na + Ca) > 0.5) in relation to the other cations (Guo and Wang, 2004 [27]; Fisher and Mullican, 1997 [28]; Cirelli and Miretzky, 2004 [29]).

Thanks to their electric charge, ions in water are adsorbed on solid surfaces, especially those of iron oxides and clay minerals. Argils are particularly effective with cations, because they are always negatively charged. The major cations adsorption /desorption direction in natural waters is as follow: (highly adsorbed) Ca > Mg > K > Na (feebly adsorbed).

 Na_2 -(clay) + (Ca, Mg)-(water) \leftrightarrow (Ca, Mg)-(clay) + Na_2 -(water)... (Hidalgo and Cruz-Sanjulian, 2001) [30].

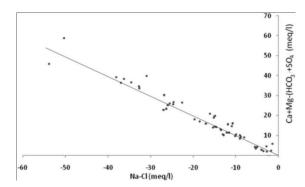


Figure 12. $(Ca + Mg) - (HCO_3 + SO_4)$ vs (Na-Cl) plotfor sampled waters.

All the samples on Fig. 12 are plotted along the line (-1:1), which confirms, that the ions exchange process plays a major role in the chemical composition of the PQA waters (Jankowski et al, 1997). Furthermore, all the samples have positives chloro-alkaline indexes (Schoeller, 1965) [31] CAI1 & CAI2, confirming that the PQA waters are in chloro-alkaline equilibrium.

The Cl / (Cl +HCO₃) ratio>0.8 of the majority of the samples (39), informs that the evaporation provides more Cl ions to the PQA waters compared to the water/rock interaction process.Generally underground waters coming in contact with sea water, brines or evaporites have ratios of Cl / Σ anions > 0.8, HCO₃ / Σ anions < 0.8 and low SO₄

concentrations (Hounslow, 1995) [32]; 38 % of the PQA samples meet these criteria.

The projection of fifteen or so samplesoutside of the Gibbsdiagram, is due to a Cl surplus in the waters. all the samples of the PQA have a ratio Na/Cl < 1, which is usually attributed to the ion exchange process, resulting in the softening of the waters (Hidalgo and Cruz-Sanjulian, 2001 [30]; Schwartz and Muehlenbachs, 1979 [33]; Phillips et al, 1986[34]). However, this, as mentioned previously, is not the case for the PQA waters, which in fact become harder as they transit towards the system outlet; a process referred to as base-exchange hardened water (Handa, 1979) [35]. Thus and based on a Na / (Na + Cl) ratio < 0.5 for all the samples, it can be deduced that the high Cl concentrations are owed to an outside source of chlorides (Hounslow, 1995) [32]; essentially, a contamination by sewage. This is clearly shown by the Revelle Indexes (Revelle, 1946) [36]calculated (Cl / CO₃ + HCO₃ (meq/l))for the PQA waters, which are all > 1.

Despite the presence of an important sewage plant with a 300,000 eq/inha treatment capacity North East of the city, the water wastes still remain a major problem in SBA. Moreover, the plant, initially supposed to treat 28,000 m³/day, receives only 6000 7000 m^3 ("Office /day Natinal l'Assainissement" (ONA), 2007) [37]. According to the « Direction de l'Hydraulique de la Wilaya (DHW) de SBA », the volume of all water wastes was estimated in 2006 at 98,000 m³/day. Moreover, the Mekerra river which traverses the PQA South to North has become over time the main "receptacle" for the city's wastes and receives throughout its length 47 pollutant effluents(Direction l'Environnement de de la Wilaya (DEW) de SBAandtheONA, 2007) [38]. Furthermore, all the small localities with a population under 200 do not have sewage networks and still use septic fosses (DEW, 2005) [37].

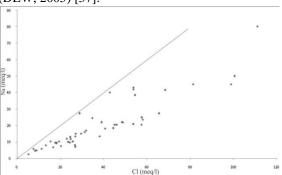


Figure 13.Na vs Cl plotfor sampled waters.

The Na, Cl relation is often utilized to identify the salinity mechanism in the semi-arid regions (Magaritz et al, 1981 [39]; Dixon and Chiswell, 1992 [40]; Sami, 1992 [41]; Singh et al, 2005 [42]; Bellaredj, 2013[23]). All the samples in Fig. 13 are plotted below the 1:1 line; indicating that the evaporation is not the only process controlling the

chemistry of the PQA waters. Usually, when the evaporation is dominant and no mineral precipitates, the Na/Cl ratio stays constant (Jankowski and Acworth, 1997) [43]. furthermore, when the dissolution of Halite is the principal source of Na, the same ratio equals approximately 1; when it is inferior to 1 however, the Na originates rather from the weathering of the silicates (Meybeck, 1987) [44]; a process generally accompanied with a predominance of the HCO₃ over the other anions.

When the pH falls under 6.7, the silicates minerals become unstable and convert to clay minerals and hydroxides. These reactions take longer and are more complexes than those relative to carbonates dissolution.

 $2NaAlSi3O8 + 2H2CO3+ 9H2O \rightarrow$ $Al_2O2Si2O5 (OH)4+ 2Na+ 4H4SiO4+ 2HCO3 ;$ or $NaAlSi3O8 + H2CO3+ 7H2O \rightarrow Na +$ Al(OH)3 + 3H4SiO4 + HCO3.

From the (Ca + Mg) vs HCO_3 and (Ca + Mg) vs $(HCO_3 + SO_4)$ plots (Fig. 14), a clear excess of the alkaline (Ca, Mg) over the (HCO_3, SO_4) is noted. This excess could be the result of inversed ions exchange phenomenon (Cerling et al, 1989 [45]; Fisher and Mullican, 1997 [28]; Ettazarini, 2005 [46]) and/or additional alternative sources of Ca and Mg other than the dissolution of carbonates; i.e., the dissolution of evaporites and the weathering of silicates (less acute) (Ettazarini, 2005 [46]; Singh and al, 2005 [42]).

According to Datta&Tyagi (1996) [47], when Na + K = 0.5 Total cations, the cations input can be derived from the weathering of the silicates. In the study area (Fig. 15), the (Na + K) / TC ratio (0.2 to 0.67. mean \approx 0.4), is inferior to (0.5). Therefore, the silicates are not the main alkali source for the PQA waters.

Figure 14.Plots of (Ca + Mg) vs $(HCO_3 + SO_4)$ (Datta&Tyagi diagram) and (Ca + Mg) vs HCO_3 for sampled waters.

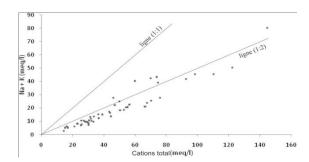


Figure 14. Plots of (Ca + Mg) vs $(HCO_3 + SO_4)$ (Datta & Tyagi diagram) and (Ca + Mg) vs HCO_3 for sampled waters.

The (Ca + Mg) vs cations total (CT) diagram (Fig. 16) indicates a growing contribution of the alkali (Na+K) in the salinity of the PQA waters. Nevertheless, the (Ca + Mg) / CT ratio (0.32 to 0.8, Mean = 0.61) reveals that the Ca and Mg remain predominant because of the evaporation and precipitation/dissolution processes (Ekwere, 2010) [48].

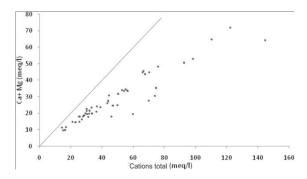


Figure 16. (Ca + Mg) vs $\sum Cations$ plot for sampled waters.

Carbonates are presents in most sedimentary and even some igneous and metamorphic rocks. When the water infiltrates the soil, it is enriched with CO₂ and dissolves quit easily the carbonate rocks in its path, until either its saturation in carbonate minerals or the vanishing of the CO₂ present in the environment.

 $CaCO_3 + CO_2 + H_2O \rightarrow Ca + 2HCO_3$ includes:

 $CO_2 + H_2O \rightarrow H + 2HCO_3 \dots$ (creation of acidic conditions (H⁺) favoring the dissolution process) And

 $CaCO_3 + H \rightarrow Ca + 2HCO_3$.

The three reactions reveal that the calcite solubility is primarily controlled by the amount of carbon dioxide present in the milieu. When the pH declines, the CO₃ are converted into HCO₃ and the dissolution of the carbonates is intensified overtime, this creates

an acid front (pH = 7-8), below which the underground waters become aggressive.

Based on the Ryzenarindexes (RI) (Ryzenar, 1944) [49], the PQA samplescan be classified as follow: 42 represent waters in equilibrium, 2 (5 and 38): waters slightly corrosive and 7 (7, 21, 34, 37, 39, 40 and 47): waters somewhat scaling.

Other processes such as the oxidation of sulphurouscompounds, can also produce hydrogen ions, thereby contributing in the carbonates dissolution process. The speed and direction of the redox reactions which control nitrification/denitrification (ammonification), oxidation of sulfides, the sulfates reduction and the methane formation depend on the oxidation state of the considered milieu. The oxygen and the organic matter are the major oxidant and reducing agents in nature. When nitrates are depleted, the oxidant agent for the underground waters becomes the sulfates. The latter, are reduced into hydrogen sulfur, part of which precipitates in the presence of iron into Pyrite. The remaining quantities have to be eliminated, because they not only give the waters an acrid taste, they also make them corrosive.

The SO_4 concentration in the PQA waters are relatively low; mainly resulting from the dissolution of gypsum (anhydrite) ($H_2O + CaSO_4.2H_2O \rightarrow Ca + SO_4 + 3H_2O$), irrigation waters (leaching of soils subjected to fertilizers and pesticides use) and sewage. The very law SO_4 / Cl ratio values (mean = 0.13, max = 0.35, min = 0.015) suggest that the sulfates are being reduced (Lavitt et al, 1997 [50]; Datta&Tyagi, 1996 [47]). The SO_4 reduction process can be explained by the following reactions.

2CH₂0 + S0₄ \rightarrow H2S + 2HCO₃ ... (Schwartz and Muehlenbachs, 1979 [33]; Phillips et al, 1986 [34]). 15CH₂0 + 2Fe₂O₃ + 8SO₄ + H \rightarrow 4FeS2 + 15HCO₃ + 8H $_2$ 0... (Drever, 1988) [51]; this reaction necessitates the presence of bacteria.

IV. Conclusion

The hydrochemical study of the PQA waters demonstrated that they deteriorate as they travel from the recharge areas (adjacent aquifers) South and East of the SBA plain to the North towards the aquifer outlet (Rocher). The least saline waters (TDS < 1g/l) are found South of Ben Badis where the population density is weak and the industrial activity inexistent. North of HassiZahan and between Lamtar and Ben Badis and along the Mekerra river, the PQA waters are relatively of good quality (TDS: 1 to 2 g/l); in the area North of HassiZahana, most of the PQA waters with low salinity values come from the Eocene karstic Limestones of Sid Ali Boussidi; between Lamtarand Ben Badis, they are mainly observed along the Bedrabine river. This is due to the

good hydrodynamic proprieties (permeability and hydraulic gradients)of the Eocene Limestones and the alluviums (gravels and conglomerates with abundant calcareous elements) along the Bedrabine and Mekerra rivers, which do not favor long periods of water/rock interactions in addition to the depth of the water table (relative protection) and the moderate agricultural and industrial Hassizahana)activity characterizing this zone in the study area. The saline to extremely saline waters (TDS>3 g/l) are present near the city of SBA, the most populated and active zone, through which a big part of the polluted Mekerra river waters transit and the locality of CaïdBelarbi, where the PQA is most exposed to the evapotranspiration (the aquifer is shallower, thinner and has a smaller section).

The PQA waters are in their majority relatively soft and can be utilized for industrial and agricultural purposes (if the Cl concentrations are reduced). They become harder, as they flow towards the Rocher outlet in the North, dissolving the carbonate rocks (The Limestones of Zigyne on the East, the Dolomite rocks and Limestones of Sidi Ali Benyoub on the South, the Eocene Limestones of Sidi Ali Boussidi and the carbonate elements present in the Conglomerate channels along the rivers Tissaf and Mekerra) on their path. Despite a slight (Ca+Mg) predominance over the (Na+K), most of the PQA waters are in chloro-alkaline equilibrium.

The ion exchange process plays a major role in the salinity of the PQA waters, especially with regards to the Na concentrations. The silicates weathering and the dissolution of evaporites contribute also in the increase of the concentrations of this element in the PQA waters. The relatively low sulfates and nitrates concentrations are the result of the redox reactions favored by the abundance of the organic matter (sewage) in the PQA waters. The high Cl concentrations characterizing the POA waters, which arealong with the bacteriologic contamination, the main problem in the study area, are found to be in contrast with the weak presence of Evaporites and Chloride salts (except some Triassic, Cretaceous and Oligo-Miocene saliferousMarls and Argils in Aintellout and mostly in the Tessala Mountains) in the region and are mostly attributed to sewage contamination. Due to the abundance of the Cl ions, most of the PQA waters are in their row state (untreated) improper for human consumption and harmful for most plants.

V. Recommendations

In order to protect and preserve the PQA waters, urgent steps have to be undertaken and the most pressing are cited bellow:

the gradual reduction of the water wastes volumes boththose directly rejected in the Mekerra river and those reaching the PQA due to the absence of sewage networks, until their complete elimination, either by constructing new sewage plants or restructuring the one already in place, which will allow the use of the treated waters both in irrigation and for the industry, reducing thereby, the volumes extracted from the POA.

Conducting daily and monthly follow-ups on the chemical quality, respectively of the PQA and the rivers Tissaf and especially Mekerra,

the legislation and/or reinforcing of laws prohibiting the discharge of untreated industrial waters in the Mekerra river by obliging all the industrials operating in the region to treat their own waste waters before releasing them in the nature,

edify the farmers to produce the most appropriate plantations for the SBA plain (climate, soils, etc.) and generalize the use of modern irrigation techniques to avoid soils leaching and the over use of pesticides, fertilizers and water, catalogue all the users of the PQA resource to eliminate the illegal extraction points susceptible of deteriorating the quality or overexploiting the PQA waters.

VI. References

- Sourisseau B., 1973. Etude géologique du bassin versant hydrogéologique de la plaine de Sidi Bel Abbès. Service hydrogéologie, Direction de l'hydraulique de la wilaya d'Oran.
- 2. Piper A.M., 1944. A graphical procedure in the geochemicalinterpretation of water analyses, Amer. Geoph.Union Trans, 25,914-923.
- Chadha D.K., 1999. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431-437.
- Durov S.A., 1948. Classification des eaux naturelles et la représentation graphiquede leur composition, Doklady Akad. Nauk. S.S.S.R. t. 59, No 1, 87-90
- 5. Souline V. A., 1946. Eaux des gisements de pétroledans le système des eauxnaturelles Moscou.
- **6.** Souline V.A., 1948. Hydrogéologie des gisements de pétrole. Moscou.
- 7. Schoeller H., 1951. Relation entre la concentration en chlore des eaux souterraines et les échanges de bases avec les terrains qui les renferment. C.R. Ac. Se, t. 232, p. 1432-4.
- 8. Gibbs R.J., 1970.Mechanisms Controlling World's water chemistry. Science, 170, No 10, 88-90.
- Robinove C.J., Longfort R.H., Brook J.W., 1958. Saline water resourceof North Dakota US Geol.Surv. Water Supply Paper, 1428, 72p.
- Heath R.C., 1983. Basic groundwaterhydrology: U.S. GeologicalSurvey Water Supply Paper2220, 84 p.
- **11.** Davis S. N., 1964. The chemistry of saline waters. Groundwater, 2(1), p. 51.
- **12.** Potelon J.L., ZysmanK., 1993. Guide des analyses d'eau potable, 155p.
- Rodier J., 2005. L'analyse de l'eau : Eaux naturelles, Eaux résiduaires, Eau de mer. 8eme édition, Dunod, Paris.
- **14.** Todd D.K., 1980. Groundwater Hydrology. 2nd ed., John Wiley and Sons, New York, 535.
- 15. Hem J.D., 1989. Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- **16.** Ragunath H.M., 1987.Groundwater. Wiley Eastern, New Delhipp 563.

Algerian Journal of Environmental Science and Technology

April edition. Vol.4. Nº1. (2018) ISSN : 2437-1114

www.aljest.org

- 17. Sawyer G. N., McCarthy D. L., 1967. Chemistry of sanitary Engineers, 2nd ed, McGraw Hill, New York, p. 518.
- Vasanthavigar M., Srinivasamoorthy K., Rajiv Gantha R., Vijayaraghavan K., Sarma V.S., 2010. Characterization and quality assessment ofgroundwater with special emphasis on irrigation utility: Thirumanimuttarsub-basin, Tamil Nadu, India. Arab .GeosciJ, DOI 10 1007/s12517-010-0190-6.
- **19.** Berne F., Cordonnier J., 1991. Traitement des eaux. Edition: Tec. P6-14.
- Langelier W. F., Ludwig H. F., 1942. Graphical methods for indicating the mineralcharacter of naturalwaters: Am. Water Works Assoc. v 34, p 335-352
- Schoeller H., 1934. Sur la concentration des sels dissous dans les eaux souterraines. Comité Études eaux souterraines, Rabat, 46-54.
- Adams S.S., Titus R., Pietersen K., Tredoux G., Harris C.,2001.Hydrochemical characteristics of aquifers near Sutherland in Western Karoo, South Africa. Journal of Hydrology, v. 241, p. 91-103.
- 23. Bellaredj A.El-M., 2013. Caractérisation des eaux souterraines de la plaine de la M'leta (Algérie, Nordouest) par application de méthodes statistiques multivariées et modélisation géochimique. Mémoire de Magister, Université d'Oran 2, 143 p.
- **24.** Feth J.H., Gibbs R.J., 1971. Mechanisms controlling world water chemistry: evaporation—crystallization process. Science 172 (3985), 870–872.
- 25. Wanty R.B., Verplanck P.L., SanJuan C.A., Church S.E., Schmidt T.S., Fey D.L., Dewitt E.H., Klein T.L., 2009. Geochemistry of surface water in alpine catchments in central Colorado, USA: resolving host-rock effects at differentspatial scales. Appl. Geochem. 24, 600–610.
- Mamatha P., Sudhakar M.R., 2010. Geochemistry of fluoride rich groundwaterin Kolar and Tumkur Districts of Karnataka. Environ. Earth Sci. 61 (1), 131–142.
- GuoH.M., Wang Y.X., 2004. Hydrogeochemical processes in shallow quaternaryaquifers from the northern part of the Datong Basin, China. Appl. Geochem. 19, 19–27.
- Fisher R. S.; Mullican W. F. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahua Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, v. 5, n. 2, p. 4-16, 1997.
- **29.** Cirelli A.F., Miretzky P., 2004. Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quatern. Int. 114, 113–121.
- **30.** Hidalgo M.C., Cruz-Sanjulian J., 2001. Groundwater composition, hydrochemicalevolution and mass transfer in a regional detrital aquifer (Baza basin, southernSpain). Appl. Geochem. 16, 745–758.
- Schoeller H., 1965. Qualitative evaluation of ground water resources. In: Methods and techniques of groundwater investigation and development. Water Resourc. Series No. 33. UNESCO. pp. 44-52.
- **32.** Hounslow A.W., 1995. Water quality data: Analysis and interpretation. Lewis Publishers, Boca Raton.
- Schwartz F.W., Muehlenbachs K., 1979. Isotope and ion geochemistry of groundwaters in the Milk River aquifer, Alberta. Water resource. Res. V 15, no 2, 259-268
- **34.** PhillipsF.M., Bentley H.W., Davis S.N., Elmore D., Swanik G., 1986. Chlorine 36 dating of very old groud waters, 2. Milk river aquifer, Alberta, Canada. Water resource. Res. V 22, no 16, 2003-2016.

- **35.** Handa B.K., 1979. Groundwater pollution in India. In Proceedings of National Symposium on Hydrology. pp. 34–49.IAHS, Publ. Univ. Roorkee, India.
- **36.** Revelle R., 1946. Criteria for recognition of seawater. Amer.Geophysical Union. Trans.v 22, 541-593.
- **37.** RamdaniN., 2007. Contribution à l'étude des boues urbaines de la station d'épuration des eaux usées résiduaires ; effets sur la fertilité d'un sol sableux. Mémoire de Magister, Université d'Oran. 154p
- 38. Bensalem M.B., 2008.Contribution à l'étude de l'efficacité de l'épuration des eauxuséesdans la ville de Sidi Bel Abbès. Mémoire de Magister, UniversitéDjillaliLiabes, 155p.
- Magaritz M., Nadler A., Koyumdjisky H., Dan, J., 1981. The use of Na-Cl ratios to trace solute sources in a semi-arid zone, WaterResour. Res., 17, 602–608.
- **40.** Dixon W., Chiswell B., 1992.The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia, J. Hydrol., 135, 259–274.
- **41.** Sami K., 1992. Recharge mechanisms and geochemical processes in asemiarid sedimentary basin, Eastern Cape, South-Africa, J. Hydrol., 139, 27–48.
- **42.** Singh A. K., Mondal G. C., Singh, P. K., Singh S., Singh T. B., Tewary, B. K., 2005. Hydrochemistry of reservoirs of Damodar River Basin, India: weathering processes and water quality assessment. Environmental Geology, v. 48, p. 1014-1028.
- 43. Jankowski J., Acworth R. I., 1997. Impact of debrisflow deposits on hydrogeochemical processes and the development of dry land salinity in the Yass River catchment, New South Wales, Australia. Hydrogeology Journal, v. 5, n. 4, p. 71-88.
- **44.** Meybeck M., 1987. Global chemical weathering from surficial rocks estimated from river dissolved loads. American Journal of Science 287, 401–428.
- **45.** Cerling T. E., Pederson B. L., Damm K. L. V., 1989. Sodium-Calcium ion exchange in the weathering shales. Implications for global weathering budgets. Geology, v. 17, p. 552-554.
- **46.** Ettazarini S., 2005. Processes of water-rock interaction in the Turonian aquifer of OumEr-Rabia Basin, Morocco. Environmental Geology, v. 49, p. 293-299.
- 47. Datta P.S., Tyagi S.K., 1996. Major Ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Processes and Groundwater Flow Regime. Journal of Geological Society of India, 47, 179-188.
- **48.** Ekwere A. S., 2010.Hydrogeological and hydrogeochemical framework of the Oban Massif, south-eastern Nigeria. 2010. Ph.D Thesis Dept. of Geology, University of Calabar, Calabar.
- **49.** Ryzner, J.W., 1944. A New Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. Journal of American Water Works Association, 36, 472-486.
- **50.** SarkarD., DattaR., Hannigan R., 2007. Concepts and Applications in Environmental Geochemistry, V 5,1st Edition, pp 238-239.
- **51.** Drever, J.I., 1988. The geochemistry of natural

A.El-M Bellaredjet al

VII. Appendix

Appendix 1. Majorions and TDS concentrations in (mg/l) and EC values in (µS/cm) of the PQA waters

1 198 212 580 180 541 11 2661 145 67 252 3337 4796 2 203 240 111 345 13 965 168 32 376 2250 2812 3 193 200 295 115 275 16 815 190 195 340 2241 2801 4 199 212 530 225 481 10 190 300 196 246 3893 4866 5 207 213 109 270 965 13 1909 290 45 367 3968 4960 6 195 213 420 160 425 9 1578 265 85 210 3152 3940 7 181 202.5 455 9 220 7 870 160 90 350 2161 2701 8 193 212.5 305 78 232 8 839 178 26 299 1965 2456 9 195.5 211 270 55 171 12 721 191 96 233 1749 2186 10 190 205 175 75 240 6 550 264 71 320 1701 2126 11 195 204.5 85 71 135 9 270 35 19 426 1050 1312 12 194.5 206 221 105 240 10 916 43 54 295 1884 2335 13 191.5 212 350 30 30 310 7 957 120 54 292 2120 2650 14 188.5 202 185 70 135 7 405 190 55 411 1458 1822 15 193.5 211 270 135 6 240 6 6 691 178 86 260 1752 2190 16 195 205 255 122 165 9 955 20 42 260 1822 2255 17 200 211 170 115 300 10 876 90 19 280 1860 2325 18 191 20 235 155 122 165 9 955 20 42 260 1822 2255 18 191 20 20 350 165 390 115 157 152 112 120 105 235 2449 3061 19 188.5 203 160 45 110 15 295 7 14 572 1218 1522 20 205.5 212 149 105 300 310 18 295 7 14 572 1218 1522 21 199 212 761 125 631 14 2325 240 67 244 308 510 22 195.5 208.5 320 180 305 300 18 1379 95 60 190 220 235 3153 23 201 200.5 360 250 185 103 12 1332 240 67 244 308 5510 24 202 205 205 122 149 210 506 81 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 244 308 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 2223 3153 23 201 200.5 360 250 145 565 16 1234 372 41 456 389 3861 24 202 205 32 11 19 165 90 13 13 190 264 87 550 190 2223 3153 31 183.5 207 80 145 565 16 1234 372 41 456 389 3861 31 195.5 207 121 300 25 110 18 361 480 162 187 399 4498 31 185.5 207 121 300 25 51 150 18 361 480 162 187 399 4498 31 185.5 207 121 300 25 51 150 18 361 480 162 187 399 4498 31 185.5 207 213 100 25 51 150 18 361 480 162 187 399 1498 31 195.5 207 121 300 25 51 150 18 361 480 162 187 399 1498 31 195.5 207 121 300 25 51 150 18 361 400 162 187 399 1498 31 195.5 207 121 300 25 51 150 18 300 168 45 47 509 347 2100 2203 31 190 205.5 207 780 315 100 77 20 13 140 1	Samples	X (km)	Y (km)	Ca	Mg	Na	к	C1	SO ₄	ио3	HCO3	TDS	EC µS/cm
2 203 203 240 111 345 13 965 168 32 376 2250 2241 2801 4 199 212 530 225 481 10 1905 300 196 246 3893 4866 5 207 213 109 270 965 13 1908 290 45 367 3968 4860 6 195 213 420 160 425 9 1578 265 85 210 3152 3940 7 181 202.5 455 9 220 7 870 160 90 330 2161 2701 181 202.5 455 9 220 7 870 160 90 330 2161 2701 190 270 95 111 190 204.5 85 171 12 721 191 96 233 1749 2186 10 190 205 175 75 246 6 550 264 71 320 1701 2126 111 195 204.5 85 71 135 9 270 35 19 426 1050 1312 12 12 134.5 206 221 105 240 10 916 43 54 295 1884 2355 13 191.5 212 330 30 310 7 957 120 54 295 1884 2355 13 191.5 212 330 30 310 7 957 120 54 295 1884 2355 15 13 191.5 212 330 30 310 7 957 120 54 295 1884 2355 15 193.5 211 235 56 246 6 650 1788 26 260 1828 2285 177 200 211 170 115 300 10 876 90 19 280 1828 2285 177 200 211 170 15 300 10 876 90 19 280 1828 2285 177 200 211 170 15 300 10 876 90 19 280 1828 2285 179 20 205.5 212 149 210 506 8 1386 168 51 320 235 2449 20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 22 1199 22 12 149 210 506 8 1386 168 51 320 2798 3497 22 1199 22 12 149 210 506 8 1386 168 51 320 2798 3497 22 199.5 20 205 25 122 149 210 506 8 1386 168 51 320 2798 3497 22 199.5 20 205 25 122 149 210 506 8 1386 168 51 320 2798 3497 22 199.5 20 205 21 191 22 1761 25 631 14 2325 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 2523 3153 32 249 240 22 205 23 13 10 30 10 11 1357 95 60 190 2523 3153 32 249 22 125 206 235 120 191 12 951 51 31 39 220 1819 2523 3153 32 240 206 235 120 191 12 951 51 51 39 220 130 425 51 20 191 12 951 51 51 39 220 130 425 51 20 191 12 951 51 51 39 220 140 553 3153 3153 31 195 203 105 55 115 6 320 285 51 51 6 382 1034 1292 23 201 205 5 640 255 1035 20 285 51 51 52 194 5632 7040 315 190 205 57 115 6 320 285 51 51 6 382 1034 1292 23 201 205 5 640 255 1035 20 285 51 51 51 51 6 300 48 40 102 275 380 380 380 380 380 380 380 380 380 380					_				-				
3													
4													
5 207 213 109 270 965 13 1909 290 45 367 3968 4960 6 195 213 420 160 423 9 1578 265 85 210 3152 3940 7 181 202.5 455 9 220 7 870 160 90 300 2161 2701 8 193 212.5 305 78 232 8 839 178 26 299 1965 2456 9 195.5 211 207 55 171 12 121 194.6 203 175 240 6 500 264 71 320 170 116 119 110 115 204 10 916 43 54 292 1210 1216 115 191.5 212 204 26 116 181 292 1210 135 7 405 <td></td>													
6 195 213 420 160 425 9 1578 265 85 210 3152 3940 7 181 202.5 455 9 220 7 870 160 90 350 2161 2701 8 193 212.5 305 78 232 8 839 178 26 299 1965 2456 9 195.5 211 207 55 171 12 721 191 96 233 1749 2186 10 190 205 157 75 204 6 550 264 71 230 1700 1212 2100 240 10 916 43 54 292 1210 210 131 131 191 207 201 13 7 405 190 353 411 148 235 211 130 10 80 190 280 210													
7 181 202.5 455 9 220 7 870 160 90 330 2161 2701 8 232 8 839 178 26 299 1965 2456 9 195.5 211 270 55 171 12 721 191 96 233 1749 2186 9 191 190 205 183 71 133 9 270 33 170 110 120 1701 2126 111 193 204.5 88 71 133 9 270 33 19 426 100 1916 43 54 295 1884 2355 131 191.5 212 30 30 30 7 957 120 54 292 1212 205 255 122 180 99 19 25 121 141 188 182 201 205 255 122 129 955 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_						
8 193 212.5 305 78 232 8 839 178 26 299 1965 2416 291 195 211 270 55 171 12 721 191 96 233 1749 2186 11 195 204.5 85 71 133 19 426 100 131 12 194.5 206 221 105 40 196 43 54 292 120 100 13 191.5 212 30 30 30 79 957 120 54 292 120 205 14 183.5 211 235 56 240 6691 178 26 201 125 211 148 193 230 211 119 235 <t></t>													
9 195.5 211 270 55 171 12 721 191 96 233 1749 2186 10 190 205 175 75 240 6 550 264 71 320 1701 2126 11 195 204.5 85 71 135 9 270 35 19 406 1050 1312 12 194.5 206 221 105 240 10 916 43 54 295 1884 2335 13 191.5 212 350 30 310 7 957 120 54 292 2120 2650 14 188.5 202 185 70 135 7 405 190 55 411 1438 1822 15 193.5 211 235 56 240 6 691 178 86 260 1752 2190 16 195 205 255 122 165 9 955 20 42 260 1828 2285 17 200 211 170 115 300 10 876 90 19 280 1860 2325 18 191 207 350 105 390 12 1132 120 105 235 2449 3061 19 188.5 203 160 45 110 15 295 7 14 572 1218 1522 20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 3252 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 223 3153 23 201 209.5 640 255 1035 20 2885 551 52 194 5632 7040 24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 900 13 1190 9264 87 550 4227 5283 27 193.5 203 105 35 115 6 320 35 168 36 188 191 320 273 28 206 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 900 13 1809 264 87 550 4227 5283 31 195.5 203 174 115 15 85 94 58 63 395 1562 1934 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 2211 31 195 203 105 35 115 6 320 35 168 351 140 98 159 4563 408 31 195.5 203 174 115 15 8 594 58 63 395 1562 1952 32 203 213 109 205 55 185 6 475 226 46 409 1607 2008 31 195.5 203 174 115 15 8 594 58 63 395 1562 1952 32 203 213 109 205 55 185 6 475 226 46 409 1607 2008 31 195.5 203 174 115 15 8 594 58 63 395 1562 1952 32 203 213 109 106 60 91 37 37 776 29 310 341 4265 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 35 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 331 341 341 205 240 341 4265 38 208.5 213 100 160 60 9 173 776 62 344 4263 3078 44 202 211.5 600 190 471 24 2040 275 56 205 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 344 2463 3078 44 102 211.5 600 60 9 60 60 9 190 25 13 344 103													
10							_						
11													
12							_						
13							_						
14 188.5 202 185 70 135 7 405 190 55 411 1458 1822 15 193.5 211 235 56 240 6 691 178 86 260 1752 2190 16 195 205 225 122 165 9 955 20 42 200 1828 2285 17 200 211 170 115 300 10 876 90 19 280 1860 2325 18 191 207 301 60 45 110 15 201 506 8 1366 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 243 4408 551 320 2798 3497 21 199 212 761 255 1035 20							_						
15													
16 195 205 255 122 165 9 955 20 42 260 1828 2285 17 200 211 170 115 300 10 876 90 19 2880 1860 2325 18 191 207 350 105 390 12 1132 105 235 2449 3061 19 183.5 203 160 45 110 15 295 7 14 572 1218 1522 20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 244 4408 5510 35 20 2885 551 59 40 199 2523 3153 22 195.5 207 215 380 20							_						
17 200 211 170 115 300 10 876 90 19 280 1860 2325 18 191 207 350 105 390 12 1132 120 105 235 2449 3061 19 188.5 203 160 45 110 15 295 7 14 572 1218 1522 20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 2523 3153 23 201 205 260 255 103 20 2885 571 1936 408 90 370 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
18 191 207 350 105 390 12 1132 120 105 235 2449 3061 19 188.5 203 160 45 110 15 295 7 14 572 1218 1522 20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1337 95 60 190 2523 3153 23 201 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 208 85 27 1936 408 90 370 4296 5370													
188.5							_						
20 205.5 212 149 210 506 8 1386 168 51 320 2798 3497 21 199 212 761 125 631 14 2325 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 2523 3153 23 201 299.5 640 255 1035 20 2885 551 52 194 5632 7040 24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 55 115 6 320 35 16 382 1034 1292							_						
21 199 212 761 125 631 14 2325 240 67 245 4408 5510 22 195.5 208.5 320 180 310 11 1357 95 60 190 2523 3153 23 201 209.5 640 255 1035 20 2885 551 52 194 5632 7040 24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 990 13 1099 237 4296 5370 26 205 213 109 305 990 13 1099 244 825 16 1234 372 41 456													
22 195.5 208.5 320 180 310 11 1357 95 60 190 2523 3153 23 201 209.5 640 255 1035 20 2885 551 52 194 5632 7040 24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 990 13 1909 264 87 550 4227 5283 27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3389 3861 <td></td>													
23 201 209.5 640 255 1035 20 2885 551 52 194 5632 7040 24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 990 13 1909 264 87 550 4227 5283 27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 221 170													
24 202 206 235 120 191 12 951 51 39 220 1819 2273 25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 990 13 1909 264 87 550 4227 5283 27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 255 1150 18 3561 480 162 187 6833 8861 39 159 213 11020 255 1150 18 3561 480 162 187 383 88541 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_						
25 207 215 380 200 885 27 1936 408 90 370 4296 5370 26 205 213 109 305 990 13 1909 264 87 550 4227 5283 27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 2211 30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952							_						
26 205 213 109 305 990 13 1909 264 87 550 4227 5283 27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 2211 30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498							_						
27 193.5 203 105 55 115 6 320 35 16 382 1034 1292 28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 2211 30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195							_						
28 206 209 260 145 565 16 1234 372 41 456 3089 3861 29 183 204 320 25 220 4 625 144 61 370 1769 2211 30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 <td></td>													
29 183 204 320 25 220 4 625 144 61 370 1769 2211 30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008													
30 199 213 1020 255 1150 18 3561 480 162 187 6833 8541 31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063													
31 195.5 203 174 115 155 8 594 58 63 395 1562 1952 32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053													
32 203 213 119 165 920 13 1520 360 45 457 3599 4498 33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507							_						
33 185.5 207 780 72 575 17 2045 410 98 159 4156 5195 34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 2													
34 198 213.5 801 130 955 16 2427 780 76 253 5438 6797 35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
35 190 209 205 55 185 6 475 226 46 409 1607 2008 36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 1							_						
36 196 214 430 159 470 9 1632 216 95 240 3251 4063 37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							_						
37 184 205 420 35 345 5 1050 168 45 375 2443 3053 38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 <													
38 208.5 213 100 160 631 14 1025 264 47 414 2655 3318 39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600							_						
39 205.5 208 780 315 1035 16 3507 624 169 360 6806 8507 40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
40 197 213 660 382 1840 12 3937 912 62 334 8139 10173 41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
41 205 210 320 215 505 29 1737 276 29 310 3421 4276 42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192							_						
42 185 205.5 355 25 270 5 880 171 50 347 2103 2628 43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25<													
43 207 206 320 141 370 12 1109 142 25 344 2463 3078 44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
44 202 211.5 600 190 471 24 2040 275 56 205 3861 4826 45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
45 207 211.5 340 205 507 13 1716 264 70 304 3419 4273 46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
46 196 214 400 165 470 8 1600 144 101 236 3124 3905 47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
47 182 202.5 359 25 210 7 645 161 62 400 1869 2336 48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
48 192 211 260 70 220 6 654 192 61 328 1791 2238 49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
49 188.5 204.5 130 60 60 9 190 25 13 548 1035 1293													
	50	196	207.5	360	170	415	12	1443	96	81	208	2785	3481

Please cite this Article as:

El-M Bellaredj A., Hamidi M., The hydrochemical characterization of the underground waters of the plain of Sidi Bel Abbès (northwestern Algeria), *Algerian J. Env. Sc. Technology*, *4:*1 (2018) 671-682