
Algerian Journal of Environmental Science and Technology 
June  edition. Vol.7. No2. (2021) 

ISSN    : 2437-1114 

www.aljest.org  
ALJEST 

 

Copyright © 2021, Algerian Journal of Environmental Science and Technology, All rights reserved 
 

Numerical modelling of the passage from free surface to 
pressurized flow in a closed pipe 

 

W. Mokrane1.2*, A. Kettab1 

 
1Research Laboratory of Water Sciences-LRS-EAU, Department of hydraulic, National 

Polytechnic School, Algiers, Algeria 
2Department of urban hydraulic, MVRE research Laboratory, Higher National School for 

hydraulics, Blida, Algeria 
 

*Corresponding author:   mokranewah@yahoo.fr   

ARTICLE INFO  ABSTRACT/RESUME  

Article History: 

Received            : 05/02/2019 

Accepted           : 04/02/2020 
 

Abstract: Urban hydraulic pipelines may be subject to considerable 

damages while a sudden flow event occurs. However, a transition 

between free surface and pressurized flow arises; both overpressures 

and depressions will appear.  Controlling this phenomenon becomes 

a necessity and must be integrated in pipe dimensioning. Most of 

earlier works were focused on the fictitious piezometric slot. In this 

work, we aimed to simulate this flow passage as a shock wave and 

using the Saint Venant mathematical model. Although, in order to 

take into account the pressurized state; we modified the pressure 

term.  The transition from a type of flow to the other is composed of 

two discontinues states. Therefore, we solve it as a Riemann problem. 

To arrive to the most appropriate numerical scheme for the solution, 

we compare between the results of the Lax Fridricks, lax Wendroff 

and Godunov schemes. We do this considering the process time, the 

standard deviation and the Courant Friediricks Levy stability 

condition. On another hand, we carried out experimental tests, on a 

transparent and closed circular pipe, to measure pressure change 

with the flow rate. Hence, we give the physical stationary solution. 

Finally, we compare numerical results to experimental ones and 

deduce that the Godunov scheme is the most recommended tool to 

simulate the flow discontinuity between free surface and pressurized 

flow 
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I. Introduction  

 

During a conduit filling process or rainstorm 

events, free surface and pressurized flow will exist 

simultaneously. This is said the mixed flow. In 

other words, the pipe is partially filled or partially 

pressurized. A case of a hydroelectric gallery has 

attracted the attention of Cunge and Wegner [1]. 

They used the Saint Venant system through the two 

types of flow considering the Preissman slot 

approach. They were followed by Dong [2]. Who 

used the same mathematical model but added the 

water compressibility and the structure elasticity 

equations. In 1999, Trajkovic studied the mixed 

flow using the slot method and a shock capturing 

model with the explicit McComark scheme. But he 

was confronted with numerical oscillations [3]. 

Fuamba [4] divided the mixed flow in three zones 

and used three different models. For free surface, he 

used the rigid column model.  In the transition 

section, he used the Saint Venant equations with the 

characteristic numerical method. He established the 

interface unknowns by linear interpolation. Then, 

he used the same mathematical model and takes 

into account the water compressibility. The air 

phase composing an important part in this type of 

flow was considered by Wright and Vasconcelos 

[5]. Bourdarias and Gerbi introduced the notion of 

coupled flow and treated the discontinuity as a free 

limit [6]. Against this Kerger [7] used the 

Preismann slot approach, but he added the negative 

one for the depressurized part of the flow. From 

what is cited below, we deduce that to study the 

transition between free surface and pressurised flow 

we must consider the two different flow states and 

not neglect the depressurized case. Instead of using 

1853 



 W. Mokrane et al 

 

Copyright © 2021, Algerian Journal of Environmental Science and Technology, All rights reserved 

 

a single set of free flow equations and considering a 

slot at the pipe top, we consider the pressure term. 

Thus, we think that the best manner to simulate 

more accurately this discontinuity will be by the 

Riemann Problem approach. We must, also, use the 

most appropriate capturing shock scheme. Finally, 

to reach this aim, we are going to compare between 

solutions of various numerical schemes. 

  

 

II. Materials and methods 

II.1. Mathematical model 

The momentum equation combined with the 

continuity one present the Saint Venant model. It is 

illustrated as follows: 

 

∂tU + ∂xF(x, U) = S(x, U)                                     (1) 
 

This is written, under vectored form, as: 

 

U⃗⃗ = [
A
Q
], F⃗ (U⃗⃗ ) = [

Q
Q2

A
+ p(x, A, Em)

] 

 

 And   

    

S⃗ (U⃗⃗ ) = [
0

gA(S0 − Sf(x, A, Em)
] 

 

Where: Em indicates the various states of flow.  p is 

the pressure term depending of the position x, A the 

flow section and also of the flow state. Q is the flow 

rate. F is the flux term. U is the unknown vector 

and S(U) represent the source term. g is the gravity 

acceleration.S0 is the bottom slope. 

II.2. Friction expression 

For a pipe with a length of L, the friction slope is 

given by:: 

 

Sf =
∆H

L
= f

1

D

u|u|

2g
                                                (2) 

  

We assume that the flow is fully rough turbulent. 

So, the Manning Strickler formula will be used but 

it depends on the flow state.’’
fS ’’, the friction 

slope, is given by the following relation: 

 

Sf = Nm(A)u|u|                                                (3) 

 

Where u is the flow velocity and Nm is expressed as 

follows: 

For Free surface flow  or a full section no 

pressurized: 

Nm(A, E1) =
nm
2

Rh(A)
4

3

                                            (4) 

  

And for Pressurized or depressurized flow: 

 

Nm(A, E2,3) =
nm
2

Rh(Ac)
4

3

                                            (5) 

 

Where: nm is the Manning coefficient. Rh is the 

hydraulic radius and Ac is the pipe section. 

II.3. Pressure expression 

In addition to the friction slope, the pressure term is 

an important element to highlight the discontinuity. 

So, we have: 

For both free and full section flow, we have: 

 

p(x, A, E1) = gAhc                                                     (6) 
 

Where hc designs the water depth from the centre of 

gravity. It must be evaluated assuming that the 

internal diameter is equal to the external one.  

And for pressurized flow case, pressure is expessed 

by: 

  

{p
(x, A, E2) = gAch + c

2(A − Ac)
∆A > 0

                       (7) 

 

And  

 

{p
(x, A, E3) = gAch + c

2(A − Ac)
∆A < 0

                        (8) 

 

This leads to write that the pressure additional term 

is: 

hs =
c2

g

∆A

Ac
                                                                (9) 

  

Where, c is the wave celerity. 

The liquid compressibility term generates a 

problem leading to not permit similarity between 

the free surface flow celerity and the pressurized 

flow one. So, we must assume as a hypothesis;   an 

elastic pipe and an incompressible flow. We do this 

following Vasconcelos [8]. 

II.4. Numerical modelling 

The partially derivative system of equations (1) is 

hyperbolic and no linear. Consequently, we use the 

finite volume method. It consists to integer, on 

simple elementary volumes, equations written as 

conservative law. It provides a discrete conservative 

approximation and it is well adapted to the fluid 

mechanical domain. 

Our computational domain is a closed circular pipe, 

with L of length. It is divided on N meshes mi. (i < I 

<N). 

 

 

 

         

 

 

Figure 1. Pipe discretising  

t 
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With:  2121 ,  iii xxm   

 

The correspondent explicit conservative numerical 

scheme is as follows: 

 

Ui
n+1 = Ui

n − λ [F
i+
1

2

n − F
i−
1

2

n ]                             (10) 

 

Where: λ =
Δt

Δx
 

 This scheme is of one step in time and three steps 

in space. 

t  is the time step:  tn+1 = tn + ∆t 

  and x  is the space step :  xi+1 = xi + ∆x 
The unknown discrete variables of the problem are:  

Ui
n = [

Ai
n

Qi
n] 

II.5. Advection solution 

May be useful to solve firstly the following 

homogeneous system of the partial derivative 

system: 

 

∂tU + ∂xF(x, U) = 0                                             (11) 

This is analogous to a Riemann problem defined as 

a Cauchy problem with an initial condition 

composed of two separated states [9], with: 

 

U(x, 0) = {
Ug si x < 0

Ud si x > 0
 

 

This is for x R  and Rt  with  𝑡 > 0 
If U(x, t)  is a weak and an entropic solution of 

(11), then 𝑈(𝜆𝑥, 𝜆𝑡) 
 
is also a weak and entropic 

solution. 

The advection solution is given by equation (10). 

II.6. Source term treatment 

Here, we consider the no homogeneous system. The 

methodology consists of dividing the operation on 

two steps.  

First step: purpose in this step is to give the 

advection solution: 

 

Ut + F(U)x = 0

U(x, tn) = Un
⟹ U(adv) 

 

second step: ordinary differential equation is given 

by [10]: 
dU

dt
= S(U)

U(x, tn) = U(adv)
⟹ Un+1 

 

Thus, solutions obtained from the two previous 

steps are:           

  

𝑈𝑖
𝑎𝑑𝑣 = 𝑈𝑖

𝑛 −
Δ𝑡

Δ𝑥
[𝐹𝑖+1/2 − 𝐹𝑖−1/2] 

And   

 

Ui
n+1 = Ui

(adv)
+ ∆tS[Ui

adv] 

   
Hence, the numerical scheme of solution, taking 

account the source term S(U), is: 

 

Ui
n+1 = Ui

n −
∆t

∆x
[Fi+1 2⁄ − Fi−1 2⁄ ] + ∆tS(Ui

n )  (12) 

II.6. Three space steps schemes 

   For these types of conservative schemes, we 

consider three space steps and one time step. They 

are defined as: 

 

Ui
n+1 = H(Ui−1

n , Ui
n, Ui

n+1) 
 

Integrating through;  2121 ,  iii xxm ; leads to 

write: 

 

dUi(t)

dt
+
1

∆x
[F (U (x

i+
1

2

, t)) − F(U(x
i−
1

2

, t))] = 0 

 

Lax friedricks scheme 

It is a technique based on decentred finite 

differentiations in time and in space. Its scheme is 

presented by: 

 

Ui
n+1 = Ui

n −
∆t

∆x
(Fi+1/2

n − Fi−1/2
n ) 

With: 

{
 

 F
i+
1

2

n =
1

2
(Fi+1

n − Fi
n) −

Δx

2Δt
(Ui+1

n − Ui
n)

F
i−
1

2

n =
1

2
(Fi

n − Fi−1
n ) −

Δx

2Δt
(Ui

n − Ui−1
n )

         (13) 

 

Lax Wendroff scheme 

By means of this scheme, the numerical solution is 

computed through two phases, as follows [11]: 

First phase: 

 

U
i+
1

2

n+1 =
Ui
n+Ui+1

n

2
−

Δt

2Δx
(F(Ui+1

n ) − F(Ui
n))         (14) 

Second phase: 

 

Ui
n+1 = Ui

n −
Δt

Δx
(F(Ui+1 2⁄

n ) − F(Ui−1 2⁄
n ))        (15) 

Godunov scheme 
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This is the exact Riemann solver, it is, also, said 

’Flux Difference splitting‘. We assume that the 

solution ′′𝑈𝑖
𝑛′′ is constant on the 

interval: ]x
i−
1

2

 x
i+
1

2

[. This allows to solve exactly 

the Riemann problem at each interface and to 

calculate the solution ′′𝑈𝑖
𝑛+1′′. 

Ui
n+1 = Ui

n −
Δt

Δx
(F(Ui+1 2⁄

n ) − F(Ui−1 2⁄
n ))      (16) 

With:  𝑈(𝑥, 𝑡) = ∑ (𝑥 − 𝜆𝑘𝑡, 0)𝑅𝑘
2
𝑘=1  

 

The interfacial fluxes are: 

 

{

F
i+
1

2

n =
1

2
[Fi+1
n + Fi

n − |Ajc|(Ui+1
n − Ui

n)]

F
i−
1

2

n =
1

2
[Fi
n + Fi−1

n − |Ajc|(Ui
n − Ui−1

n )]
       (17)    

 

Knowing that: 𝐴𝑗𝑐 =
∂F(U)

𝜕𝑈
  is the Jacobean matrix 

of ’F’ depending of ’U’. 

Where: Ui ≠ Ui+1 

 

Courant Friediricks Levy condition 

Previous numerical schemes must be stable, so they 

must verify the stability condition of Courant 

Friediricks Levy [11]:  

∆t = cfl
∆x

max{|λk|}
                                                (18) 

With:0 < cfl < 1 

II.7. Solution computation  

Finally, the global solution of the hyperbolic system 

of derivative partial equation (1) is given by: 

 

Ui
n+1 = Ui

n −
△ t

△ x
[F̃
I+
1

2

n − F̃
i−
1

2

n ] +△ tS(Ui
n) 

 

Where; F̃i+1/2
n  and F̃i−1/2

n  are the interfacial Fluxes. 

In the purpose to solve this equation, characteristics 

of the computational domain , initial and limit 

conditions are defined firstly, then the interfacial 

fluxes and source term are calculated  .Results are 

given for one step of time and three steps of space. 

A comparison between the numerical schemes will 

give the most appropriate solution for the domain of 

application. 

II.8. Stationary solution  

Experimental setup is composed of a centrifugal 

pump, a transparent circular closed pipe of three 

meters length and of 0.05 m diameter. It is 

equipped of two valves at it’s down and up streams. 

A rectangular tank is used as a source of water. The 

valves allow us to create transitions in the pipe. An 

electromagnetic flow meter is used. Manometers 

are placed at different distances to detect the 

pressurized sections. 

 

III. Results and discussion 

III.1. Results for various courant numbers 

Both numerical and exact solution results are 

presented in figures 2, 3, 4 and 5 in the section, in a 

square meter, depending of the space position in the 

meter. The flow rate is illustrated in figures 6, 7, 8 

and 9. So, It is the global vector solution [A 𝑄] of 

the partial derivative equation system modelling the 

mixed flow occurring inside a closed pipe. It 

presents the simulation results of the transition 

discontinuity between two different flow states. 

This is while we used three numerical schemes: Lax 

Friedricks, Lax Wendroff and Godunov. For each 

scheme; we give solutions for various values of the 

Courant Friedricks Levy number. These values are: 

0.1, 0.5, 0.9 and 2. 

 
Figure 2. Numerical solutions of flow section for 

cfl = 0.1 

 

 
Figure 3. Numerical solutions of flow section for 

cfl = 0.5 

 

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

x

S
ec

ti
o

n

 

 

Lax-Friedrichs

Lax-Wendroff

Godunov

exact

c fl=0.1

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

x

S
e
c
ti

o
n

 

 

Lax-Friedrichs

Lax-Wendroff

Godunov

exact

cfl=0.5

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

x

S
e
c
ti

o
n

 

 

Lax-Friedrichs

Lax-Wendroff

Godunov

exact

cfl=0.9

1856 



Algerian Journal of Environmental Science and Technology 
June  edition. Vol.7. No2. (2021) 

ISSN    : 2437-1114 

www.aljest.org  
ALJEST 

 

Copyright © 2021, Algerian Journal of Environmental Science and Technology, All rights reserved 
 

Figure 4. Numerical solutions of flow section for 

cfl = 0.9 

 
Figure 5. Numerical solutions of flow section for 

cfl = 2 

 
Figure 6. Numerical solutions of flow rate for  

cfl = 0.1 

 
Figure 7. Numerical solutions of flow rate for  

cfl = 0.5 

 

Figure 8. Numerical solutions of flow rate for  

cfl = 0.9 

 
Figure 9. Numerical solutions of flow rate for  

cfl = 2 

 

 

III.2. Experimental results discussion 

Results issued from experimental measurements are 

qualified of exact or stationary solution. When flow 

occurs through the closed pipe a hydraulic jump 

happens corresponding to a water break, so both 

first and second conjugate heads were measured. 

The stationary phenomenon was reached by mean 

of the up and downstream valves which were 

carefully manipulated. Furthermore, water body 

moved expelling air and a considerable difference 

of the flow height was detected which was also 

observed by Wright and Vasconcelos[5]                  

and by Chunli[12]. Hence, analogous Piston effect 

will be a best description of the flow transition 

while experimental pipe was partially filled. 

 

III.3. Numerical results discussion 

Considering smooth material to evaluate the friction 

slope and assuming an equivalent rectangular 

section to the circular one, we got the source term 

expression. Then, the hyperbolic system established 

previously was solved and all of solutions 

established, using the three numerical schemes, 

presented a discontinuity which confirms the piston 

effect observed during experimentation. The 

descriptive statistical analysis reveals a maximum 

section value of 0.00192, a minimum of 0.000842 

and a mean of 0.001381, with a standard deviation 

of 0.0005417. The fraction between the pipe area 

and each of these values is about 98% for the 

maximum section, about 43% for the minimum 

section and about 70% for the mean section. All of 

these ratios show that the flow will be composed, at 

the same time, of free and pressurized surface. This 

is true if we consider the full section at a quotient of 

85%.  

In order to exam the interface displacement through 

a considered mesh, we studied four different cases 

related to Courant number values.  
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III.4. CPU time and statistic parameters  

On another hand of the previous results, tables’ n°1 

n°2, n°3 and n°4 show the process time designed by 

CPU time and the statistic parameters of flow 

results. Which make easier the comparison between 

the numerical schemes we used in this work The 

Courant Friediricks Levy number is also an 

important factor for this comparison.  

 

 

 

Table 1. Schemes comparison for cfl=0.1 

cheme cpu std max min mean 

Lax Friedricks 248.8528 2.179*10-19 0.0009805 0.0009805 0.0009805 

Lax Wendrof 248.8840 4.976*10-7 0.0004082 0.0004077 0.0004079 

Godunov 248.8528 2.179*10-19 0.0009805 0.0009805 0.0009805 

Exact experimental 8.717*10-19 0.000789 0.000789 0.000789 

 

Table 2. Schemes comparison for cfl=0.5 

Schéma cpu std max min mean 

Lax Friedricks 50.4039 2.179*10-18 0.00098 0.00098 0.00098 

Lax Wendrof 50.3727 3.76*10-7 0.0001203 0.0001195 0.0001199 

Godunov 50.3727 1.961*10-18 0.00098 0.00098 0.00098 

Exact experimental 8.717*10-19 0.000789 0.000789 0.000789 

 

Table 3. Schemes comparison for cfl=0.9 

 

 

 

 

 

 

 

 

Table 4. Schemes comparison for cfl=2 

 

schéma cpu std max min mean 

Lax Friedricks 14.5081 0 0.0009781 0.0009781 0.0009781 

Lax Wendrof 14.4925 - - - - 

Godunov 14.5237 0 0.0009781 0.0009781 0.0009781 

exact experimental 8.717*10-19 0.000789 0.000789 0.000789 

 

 

Lax Friedricks and Godunov schemes are 

characterized by a low value of the standard 

deviation which means that their simulation results 

are well distributed. They give same minimal, 

maximal and mean values as the experimental data. 

But Godunov scheme has a lower value of the CPU 

time. However, Lax Wendroff scheme gives a 

greater value of the standard deviation. Its minimal, 

maximal and mean values approach half of the 

exact solution and are less than values of the 

precedent schemes. Although, for a courant number 

value of ‘’0.1’’, the CPU time value is more 

important than the Lax Friedricks and Godunov 

schemes ones. 

When the courant number is upper than one and 

takes a value of ‘’2’’, which means that the 

interface moves through two meshes during a time 

step, Lax Wendroff scheme would not be valid 

while the two others give a good simulation with a 

standard deviation of zero. 

Considering the previous remarks; Godunov 

scheme will be the most appropriate and 

recommended. So, this scheme is the numerical 

model which is able to describe the transition as a 

mathematical discontinuity of the flow interface in 

a partially filled or pressurised pipe. Which looks to 

be Similar to Kerger‘s approach pairing Guodunov 

scheme to both negative and positive piezometric 

slot model [7].  

 

IV. Conclusion 

 

Transition from free surface flow to pressurized, 

through closed pipes, present a serious anomaly of 

hydraulic networks operating. Although, currently, 

does not exist a well-defined method to remedy to 

Scheme cpu std max min mean 

Lax Friedricks 55.3180 8.717*10-19 0.0009771 0.0009771 0.0009771 

Lax Wendrof 55.3024 3.983*10-7 0.00006929 0.0000685 0.00006889 

Godunov 55.3024 8.717*10-19 0.0009771 0.0009771 0.0009771 

Exact experimental 8.717*10-19 0.000789 0.000789 0.000789 
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this problem. However, transient state resulting 

from the cited anomaly is governed by a modified 

Saint Venant partial derivative equations system. 

So, we add the flow state type in the source term to 

display the flow transition. Hence, a mathematical 

discontinuity appears and we solved the governing 

equations system as a Riemann problem using 

capturing chock numerical schemes. Among which, 

we used three ones, for three steps in space and one 

step in time. On another hand, we carried out 

experimental tests on a transparent closed pipe in 

order to present a stationary exact solution. 

Descriptive statistical parameters, courant number 

and process time “CPU”, tools we used, to compare 

the Lax Friedricks, Lax Wendroff and Godunov 

schemes, allowed us to conclude that: 

 Experimental results present the highest value 

of standard deviation. 

 Both Lax Friedricks and Godunov numerical 

results are distributed better than the Lax 

Wendroff ones. 

 The lowest value of CPU time is detected for 

the Godunov numerical scheme. 

 When, we consider an interface displacement 

through two meshes in one lap time, the Lax 

Wendroff scheme is not valid.   

 Both experimental and numerical results show 

an analogous Piston effect of the passage from 

free surface to pressurized flow.  

 We recommend as most appropriate scheme, 

for computing a partially pressurised transient 

flow, is the Flux Difference splitting said 

Godunov scheme. 

 Finally and wishing expanding the present study 

background, we envisage to include air phase 

development and bottom slope. influence on the 

solution behaviour in future works.   
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