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Abstract: In this work, a quantitative structure-property relationship 

(QSPR) was built by using multiple linear regression (MLR) and 

artificial neural networks (ANN) to  predict the wavelengths (λmax)of 

phenolic dyes. After many procedures to reduce the number of 

descriptors, a hybrid genetic algorithm and multiple linear 

regression (GA/MLR) method was used to select the descriptors that 

resulted in the best fitted models. The statistical parameters of the 

MLR model (R² = 89.01 %, Q²LOO = 85.39 %, s = 24.763) showed a 

good predictive capacity of λmax. The comparison between statistical 

parameters obtained by MLR and ANN models indicates the 

superiority of the ANN over that the MLR model, which illustrates 

that the ANN method is an excellent alternative for developing QSPR 

models for λmax than MLR method. 
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I. Introduction  

Nowadays, dyes dominate the market especially 

since their properties can be precisely adapted in 

many sectors such as; textile, plastic, food, paper, 

printing, pharmaceutical, and cosmetic industries 

[1-4]. All these dyes are synthesized mainly from 

petroleum products, especially benzene and its 

derivatives such as toluene, naphthalene, xylene 

and anthracene [5].  

Since the discovery of the first synthetic dye in 

1856 by Perkin, the synthetic dyes gained huge 

popularity and began to be synthesized on a large 

scale [6-8]. In fact, it has reached to a level of 

annually over 7.0 x 105 and nearly 1000 different 

types of dyes are produced worldwide [9-12].  

The dye molecules absorb electromagnetic 

radiation, but differ in the specific wavelengths 

absorbed. Some dye absorbs light in the visible 

spectrum (400 – 800 nm) [13]. The dye molecules 

have delocalized electron systems with conjugated 

double bonds consists of two groups; the 

chromophore and the auxochrome groups [14, 15]. 

Dyes exhibit considerable structural diversity and 

are classified in several ways [16, 17]. So, they can 

be classified by both their chemical structure (azo, 

anthraquinone, sulfur, indigoid, triphenylmethyl 

(trityl), and phthalocyanine) [16, 18] and their 

applications (acid, basic, direct, disperse, mordant, 

reactive, and vat dyes) [19-22]. On the other hand, 

the spectroscopic property is related to the color 

property and determined by the dyes structure. It is 

noted that the maximum absorption wavelengths 

(λmax) [23]. There have been some reports on the 

applications of quantitative structure-property 

relationship (QSPR) methods to investigate the 

relationship between λmax and the dyes structure 

[24]. Briefly, QSPR is a promising method applied 

to quantify the relationship between the molecular 

structural information and their physicochemical 

properties [25]. The applications of QSPR are 

found in all major chemical disciplines including 

physical organic, physical, medicinal, agricultural, 

biological, environmental, and polymer chemistry 

[26-31]. QSPR model consists of a mathematical 

relationship between the property of interest and 

variety of molecular features (named descriptors) 

derived from the structure of the molecule, which 

ranged from structural and topological indices to 

electronic and quantum chemical properties [32]. 

The main steps involved to include the data 

collection, the molecular descriptor selection and 

obtaining, the correlation model development, and 

finally the model evaluation [33]. Many different 

chemometrics methods, such as multiple linear 
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regressions (MLR) [34], different types of artificial 

neural networks (ANN) [35, 36] and genetic 

algorithms (GAs) [37] can be employed to derive 

correlation models between the molecular structures 

and their properties. Multiple linear regression 

(MLR) are the simplest and most commonly used 

approach in QSPR since it assumes a simple linear 

relation between the property and each molecular 

descriptor. However, nonlinear approaches, such as 

artificial neural networks (ANN), can also be 

investigated. These approaches can “catch” the 

hidden nonlinearity between the property and the 

descriptors, which make them better predictors than 

MLR models in the most cases [38, 39].  

The aim of the present study is to develop a QSPR 

model between the dye structure and λmax of a group 

of typical industry organic dyes. Furthermore, 

QSPR model will be used to predict λmax of 69 

phenolic dyes and help to understand the physical 

mechanisms determining the maximum absorption 

λmax of phenolic dyes.  

 

II. Materials and methods 

II.1. Dataset 

A total set of 69 phenolic dyes with a wide 

structural diversity (see Table S1) are selected as a 

dataset. The diversity of dataset assures the quality 

and the robustness of the predictive power of the 

QSPR model. To select significant descriptors for 

the QSPR model that captures all the underlying 

interaction mechanisms, it is advisable to have as 

many structural characteristics as possible in the 

dataset. The dataset of this work included phenolic 

dyes, all values of λmax are taken from the literature 

[40]. The reported λmax values of different dyes are 

between 347 and 618 nm (Table 1). 

II.2. Structure and descriptors generation 

The chemical structures of all compounds are 

designed using ChemDraw 7.0 program [41] and 

their three dimensional geometries are pre-

optimized with the semi-empirical PM3 method 

using Hyperchem program [42]. The final 

geometries are then used as input for the generation 

of more than 1600 descriptors using Dragon 5.3 

software [43]. The generated molecular descriptors 

include topological descriptors, molecular counts, 

connectivity indices, information indices, 2D 

autocorrelations, edge connectivity indices…etc. A 

preselection of descriptors is performed with the 

aim to reduce the pool of descriptors by eliminating 

those that satisfy the following conditions: (a) the 

descriptor has a constant or near-constant value for 

all molecules investigated; (b) in the mono 

parametric correlations with λmax the descriptors 

has a squared correlation coefficient lower than 0.1 

and (c) the descriptors has an inter-correlation 

coefficient higher than 0.95 with another descriptor 

[44]. The pre-selection is performed in DRAGON 

software [43]. 

II.3. Model development and validation 

According to the principles of the Organization for 

cooperation and Economic Development (OECD), 

a quantitative model of structure-activity (property) 

relationship (QSAR/QSPR) should include 

appropriate measures of quality of fit, robustness 

and predictability. While the internal performance 

of a model is determined using a learning set and 

the predictivity is determined using an appropriate 

test set [45]. 

To develop a powerful QSPR model, robust and 

consistent data is required. Significant descriptors 

are selected via the genetic algorithm (GA) in the 

Mobydigs software [46]. GA is a stochastic 

optimization method that mimics the evolution 

process by manipulating a collection of data 

structures [47]. It has been used for the selection of 

characteristics in QSAR studies [48]. The cross-

validation value leave-one-out (LOO) is the 

optimized parameter in this study. The GA-MLR 

model for the training set is obtained using the 

Mobydigs software. Models with varying numbers 

of descriptors are examined. The developed models 

have been verified for over-adjustment due to the 

large number of descriptors and the variable 

multicollinearity. The possible multicollinearity 

among the selected descriptors is avoided by 

applying the rule Q Under the Influence of K 

(QUIK) [49]. The parameter of QUIK rule has been 

set to 0.05 to avoid multicollinearity. 

The main objective of any QSPR study is to get a 

model with the highest predictive and 

generalization abilities. Therefore, two principal 

parameters (internal validation and external 

validation) are carried out in order to judge the 

predictive power of the developed QSAR models. 

Several commonly used statistic terms are adopted 

to check the reliability, robustness and stability of 

the proposed model such as correlation coefficient 

(R²) (see eq.1), leave-one-out (LOO) cross-

validated Q² LOO (eq.2), and root mean squared error 

(RMSE) (eq.3): 

 

𝑅2 = 1 −
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

            (1) 

𝑄𝐿𝑂𝑂
2 = 1 −

∑ (�̂�𝑖/𝑖−𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

            (2) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑁−1
            (3) 

Also, leave-many-out (LMO) and Y scrambling 

techniques are also employed. Leave-many-out 

(LMO) is a more powerful technique than LOO to 

avoid over estimation and to verify the predictive 

ability and stability of a model. Here, LMO is 

repeated for 2000 times with 30 % of the objects 

left out randomly from the training set at each time. 

Then a mean value of Q²LMO is reported. 

Randomization test is applied to exclude the 

possibility of increasing the correlation by chance 

and to check for reliability and robustness by 

permutation testing. New models are recalculated 
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for randomly reordered responses (Y scrambling). 

The predictive power of QSPR model can be 

estimated by the external Q²ext defined as follows: 

𝑄𝑒𝑥𝑡
2 = 1 −

∑ (�̂�𝑖/𝑖−𝑦𝑖)
2

/𝑛𝑒𝑥𝑡
𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2/𝑛𝑡𝑟
𝑛𝑡𝑟
𝑖=1

         (4) 

Tropsha et al. are suggested some criteria which are 

satisfied by the proposed model [50]. These criteria 

include: 

𝑄² > 0.5                 (5) 

 

 
𝑟²−𝑟0

2

𝑟²
< 0.1,

𝑟²−𝑟0
′2

𝑟²
< 0.1            (6) 

 

 0.85 < 𝑘 < 1.15 𝑜𝑟  0.85 < 𝑘′ < 1.15            (7) 

Here Q2 is the correlation coefficient between the 

calculated and the experimental values in the 

validation set. 𝑟0
2 and 𝑟0

′2 are the coefficients of 

determination. k and kʹ are slopes of regression lines 

through the origin of predicted vs. observed, and 

observed vs. predicted, respectively.  

The applicability domain (AD) of QSPR model 

must be defined if the model is to be used for 

screening new compounds [51]. The AD is the 

theoretical region in the space defined by the 

descriptors of the model and the modeled response, 

for which a given QSPR should make reliable 

predictions. This region is defined by the nature of 

the compounds in the training set and can be 

characterized in various ways. In this work, the 

structural AD is verified by the leverage approach. 

The Williams plot, the plot of leverage values vs. 

standardized residuals, is used to give a graphical 

detection of both the response outliers (Y outliers) 

and the structurally influential compounds (X 

outliers) [51]. In this plot, the two horizontal lines 

indicate the limit of normal values for Y outliers 

(i.e. compound with standardized residuals greater 

than 3 standard deviation units, ± 3s); the vertical 

straight lines indicate the limits of normal values 

for X outliers (i.e. compound with leverage values 

greater than the threshold value, h*). In general, h* 

is set to 3(p+1) /n, where p is the number of 

descriptors in the developed model and n is the 

number of compounds in the training set [52]. A 

composite predicted value greater than three 

normalized residuals is considered an outlier. 

II.4. Artificial neural networks (ANN) 

Neural networks have been studied since the 1940s 

[53]. The basic ideas of this technique come from 

cognitive research, from which comes the name 

"neural networks". The technique inspired many 

researchers, but much of the interest disappears 

after an article by Minsky and Papert [54]. Finally, 

it is published in the early 80s after a virtual 

forgetfulness of twenty years. The cause of the 

sudden interest is the appearance of new 

architectures of neural networks. 

Artificial neural network (ANN) is an information-

processing pattern that is inspired by the way 

biological nervous systems, such as the brain, 

process information [55]. The majority of the 

networks contain at least three layers: input, hidden 

and output. Based on the function, there are 

different types of neural networks like feedforward 

backpropagation, counter propagation, probabilistic 

neural network, self-organizing map, etc. In the 

present study, for the development of our nonlinear 

model, feed-forward backpropagation method was 

used. Multilayer feed-forward network is a type of 

ANN widely used, which is trained by the back-

propagation (BP) learning algorithm [56]. ANN 

consists of several “neurons” that receive data from 

the outside, process the data, and output a signal. A 

“neuron” is essentially a regression equation with a 

nonlinear output. When more than one of these 

neurons is used, nonlinear models can be fitted. BP-

ANN receives a set of inputs, which are multiplied 

by each neuron’s weight. These products are 

summed for each neuron, and a nonlinear transfer 

function is applied. In this study, the log sigmoid 

function is defined as follow: 

𝑓(𝑥) =
1

1+𝑒−𝑥            (8) 

This equation is used as a transfer function. The 

transformed sums are then multiplied by the output 

weights where they are summed a final time, 

transformed, and interpreted. Each input and output 

value is scaled between 0 and 1 by using the 

following equation: 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
              (9)  

Here X′ is the normalized value; x is any one of the 

descriptor vectors. Xmax and Xmin are the maximum 

and minimum values of the descriptor vector in the 

dataset. 

Since a back-propagation network is a supervised 

method, the desired output must be known for each 

input vector so an error can be calculated. This 

error is propagated backward through the network, 

adjusting the weights so that the next time the 

network sees the same input patterns, it will come 

closer to the desired output. The patterns are 

repeated many times until the network learns the 

relationship. 

 

III. Results and discussion 

III.1. Dataset for analysis 

The experimental data of λmax values are divided 

randomly into training and validation sets. As a first 

step, GA-MLR is applied to the training set to 

select the best subset of descriptors and build a 

linear model. The six selected descriptors for the 

selected model are regrouped in the Table 1. 

III.2. Multiple linear regressions (MLR) model 
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In order to predict λmax, a mathematical linear 

model is proposed using multiple linear regression. 

The whole data set was split into a training set with 

49 compounds and into a prediction set with 20 

compounds. The optimal model obtained contains 

six molecular descriptors: EHOMO, X2A, X5A, 

RDF080e, RDF135e and R8u+, is defined by the 

following equation: 

 

max = 1913 + 42.1 EHOMO +   2063 X2A + 6423 

X5A + 1.96 RDF080e + 2.60 RD135e  + 1674 

R8u+                                                                    (10) 
ntr = 49, R²= 89.01%, Q²LOO = 85.39%, Q²LMO = 

84.28%, Q²ext = 85.73%, RMSEtr =22.926,  

 

 RMSEval =26.121,  s = 24.762, F= 56.676, 

Q²Yscrambling =  -0.1972, R²Yscrambling = 0.1262. 

 

The statistical parameters of the model prove that 

the established model is stable, robust and 

predictive. Thus, the model was approved, R² and 

Q²LOO value is greater than 0.7. Additionally, this 

model has a smaller RMSEval values and the 

greatest Q²ext values, which indicate that this model 

presented the least error and the smallest 

differences between the experimental and predicted 

data. Also, Q²LMO values for the model is greater 

than 0.6 and close to R². Additionally, the value of 

the Fisher statistic (F = 56.676), which indicates 

that the model is good in the prediction of the 

values of λmax. The low value of Q²Yscrambling and 

R²Yscrambling indicates that the obtained model has no 

chance correlation. The proposed MLR model 

satisfies the Golbraikh and Tropsha requirements of 

the test set;  

 

Q² = 0.8543 > 0.5      r0² = 0.8539 r0′2 = 0.8368 

 

r² − r0² /r² = 0.0005 <0.1 r² − r0′2 /r² = 0.0205<0.1 

0.85 ≤ k = 1.0001 ≤ 1.15  0.85 ≤ k’ = 0.9971 ≤1.15 

The results of prediction by the developed model 

are regrouped in Table 1. 

  

Table 1. Names, experimental and predicted λmax  and the calculated descriptors of the model 

 

N° Name 
λmax 

exp 

λmax 

Pred 
EHOMO X2A X5A RDF080e RDF135e R8u+ 

1 Acid blue 45 595 582.52 -8.946 0.282 0.06 13.276 0 0.023 

2 Acid red 97 498 523.06 -8.67 0.285 0.071 29.45 15.738 0.021 

3 Acid red 114 514 537.86 -8.709 0.291 0.07 30.303 26.941 0.018 

4 Acid red 151 512 480.47 -8.716 0.293 0.078 8.472 6.604 0.023 

5 Acid red 183 494 477.91 -9.152 0.297 0.073 11.438 7.023 0.021 

6 Acid violet 7 520 540.94 -8.831 0.282 0.072 6.783 3.029 0.029 

7 Allura Red AC 504 494.72 -9.398 0.293 0.069 12.689 3.419 0.024 

8 Biebrich Scarlet 505 481.88 -8.969 0.296 0.075 14.767 9.032 0.026 

9 Brilliant Black BN 570 544.41 -8.921 0.296 0.065 35.365 25.108 0.023 

10 Brilliant Crocein 510 513.14 -9.072 0.297 0.071 15.769 8.598 0.035 

11 Brilliant yellow 397 443.98 -8.94 0.303 0.079 28.039 24.614 0.018 

12 Chicago sky blue 6b 618 612.42 -8.974 0.285 0.063 23.609 36.674 0.012 

13 Chromotrope 2B 514 511.91 -9.309 0.298 0.068 13.142 7.218 0.029 

14 Crystal scarlet G 510 525.26 -8.607 0.289 0.068 15.248 2.518 0.018 

15 Direct blue 71 594 574.28 -8.535 0.285 0.067 45.267 37.918 0.017 

16 Direct red 23 507 544.83 -8.778 0.292 0.07 25.615 27.995 0.018 

17 Direct red 75 522 539.21 -8.557 0.294 0.071 29.355 28.494 0.019 

18 Direct red 80 528 506 -9.053 0.296 0.07 58.237 50.493 0.01 

19 Direct violet 51 549 528.62 -8.529 0.29 0.072 30.018 25.048 0.017 

20 Disperse yellow 7 385 395.67 -8.906 0.299 0.087 6.846 6.69 0.017 

21 Eriochrome black T 503 554.25 -8.931 0.284 0.068 7.57 4.644 0.025 

22 
Eriochrome blue 

black B 
528 527.4 -8.713 0.282 0.071 11.693 1.01 0.023 
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23 Evans blue 611 624.91 -8.882 0.287 0.063 27.062 42.904 0.014 

24 Mordant brown 24 373 462.96 -9.019 0.305 0.074 7.757 0 0.029 

25 Mordant brown 33 442 369.07 -9.718 0.306 0.082 4.025 0.017 0.018 

26 Mordant orange 1 385 392.23 -8.621 0.306 0.086 4.332 0 0.02 

27 Mordant yellow 12 380 566.39 -8.874 0.293 0.068 17.173 20.229 0.029 

28 Naphthol blue black 618 521.86 -8.576 0.284 0.078 16.093 8.573 0.039 

29 Oil red EGN 521 501.54 -8.557 0.285 0.078 23.033 12.925 0.029 

30 Oil red O 518 323.21 -8.974 0.31 0.094 3.256 0 0.022 

31 4-phenylazophenol 347 502.34 -8.485 0.286 0.077 9.293 0 0.029 

32 Sudan II 493 479.21 -8.654 0.287 0.081 6.24 8.657 0.019 

33 Sudan III 507 471.01 -9.218 0.3 0.072 8.831 2.729 0.022 

34 Sunset Yellow FCF 482 516.63 -8.754 0.288 0.078 6.22 0 0.047 

35 Toluidine Red 507 554.45 -8.738 0.289 0.066 37.258 30.797 0.013 

36 Trypan Blue 520 491.89 -8.895 0.297 0.067 16.156 0.836 0.015 

37 Xylidine Ponceau 2R 503 493.26 -8.712 0.297 0.069 45.766 28.309 0.011 

38 
Cibacron Brilliant 

Red 3B-A 
517 572.87 -8.079 0.284 0.07 1.95 0 0.023 

39 Methylene violet 580 480.82 -8.934 0.293 0.076 4.907 0.047 0.027 

40 Acid orange 8 490 352.99 -9.575 0.306 0.084 4.455 0 0.013 

41 Alizarin yellow GG 362 499.33 -8.889 0.289 0.068 23.45 1.369 0.021 

42 Bordeaux R 518 461.34 -8.598 0.287 0.079 12.12 4.236 0.013 

43 Disperse orange 13 427 477.29 -8.718 0.298 0.075 7.583 0 0.025 

44 Mordant brown 48 492 377.95 -9.588 0.31 0.081 7.043 2.382 0.021 

45 Mordant yellow 10 354 504.21 -8.527 0.284 0.078 9.68 0 0.033 

46 Orange OT 505 549.64 -8.811 0.282 0.071 5.98 1.041 0.032 

47 
Platine chrome black 

6BN 
569 472.47 -8.559 0.286 0.08 6.286 0 0.021 

48 Sudan I 476 376.8 -8.842 0.306 0.088 4.323 0 0.024 

49 Sudan Orange G 388 543.36 -8.878 0.294 0.073 13.049 21.466 0.029 

50 Direct red 81* 508 420.99 -9.259 0.302 0.08 7.684 9.151 0.015 

51 Mordant orange 10* 386 531.24 -9.137 0.293 0.065 15.572 8.764 0.019 

52 New coccine* 506 511.88 -9.272 0.299 0.068 8.322 1.177 0.033 

53 Orange G* 475 491.41 -9.018 0.308 0.07 13.787 16.368 0.016 

54 Reactive Orange 16* 494 413.84 -9.216 0.311 0.08 7.235 2.197 0.031 

55 Tropaeolin O* 490 430.33 -9.228 0.292 0.076 18.493 0 0.019 

56 Mordant red 19* 413 442.01 -9.198 0.309 0.075 15.846 4.019 0.033 

57 Acid yellow 99* 445 519.1 -8.848 0.282 0.072 8.928 1.026 0.022 

58 Acid red 88* 505 493.27 -9.291 0.292 0.066 22.428 2.855 0.02 

59 Amaranth* 521 522 -9.236 0.287 0.068 12.058 6.165 0.02 

60 Chromotrope FB* 515 521.67 -9.144 0.297 0.068 12.05 2.816 0.035 

61 Chromotrope 2r* 510 485.59 -8.982 0.294 0.074 8.581 0 0.029 
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62 Crocein orange G* 482 364.95 -8.876 0.312 0.088 5.163 0.1 0.026 

63 Disperse yellow 3* 357 
364.950

3 
-8.876 0.312 0.088 5.163 0.1 0.026 

64 Mordant brown 4* 500 469.19 -8.552 0.298 0.075 9.298 0 0.018 

65 Orange II* 483 472.99 -8.798 0.294 0.076 7.463 0.135 0.023 

66 Plasmocorinth B* 527 514.7 -9.089 0.296 0.068 15.964 2.696 0.033 

67 Ponceau SS* 514 494.09 -9.255 0.296 0.071 18.633 9.464 0.029 

68 Sudan IV* 520 507.75 -8.558 0.285 0.078 12.718 9.47 0.026 

69 Sudan Red B* 521 511.89 -8.586 0.287 0.078 9.101 7.794 0.03 

 

*Compounds with the validation set. 

 

III.3. Variable analysis 

The multi-collinearity between the above six 

descriptors for the model is detected by calculating 

their variation inflation factors VIF as shown in 

Table 2. Consequently, it has been found that the 

descriptors employed in the proposed models have 

low-inter-correlation. The VIF is defined as follow 

[57]: 

 

𝑉𝐼𝐹 =  
1

1−𝑅2          (11) 

 

Table 2. The coefficients Analysis of MLR Model 

Where R2 is the squared correlation coefficient 

between the coefficient regressed against all the 

other descriptors in the developed model. If VIF 

value is bigger than 5.0 indicates a more serious 

multi-colinearity problem. Where, a value less than 

5 indicates that they are all highly significant 

descriptors. As shown in Table 2, VIF value for 

each descriptor is less than 5, which indicates 

absence of any inter-correlation among the 

descriptors and the model had evident statistical 

significance. 

 

Predictor Coef SE Coef T P VIF 

Constant 1913.5 144.4 13.25 0 - 

EHOMO 42.06 16.19 2.60 0.013 1.988 

X2A -2062.9 739.3 -2.79 0.008 2.855 

X5A -6422.6 771.8 -8.32 0 2.319 

RDF080e -1.963 0.6172 -3.18 0.003 4.834 

RDF135e 2.5966 0.5652 4.59 0 4.641 

R8u+ 1673.8 576.8 2.90 0.006 1.431 

 

P-value is smaller than 0.05 means the obtained 

equation is statistically important at 95 % level. 

Predicted versus experimental values for λmax 

values of training and validation set obtained by 
MLR modeling is shown in Figure 1. An agreement 

between the experimental and predicted λmax for 
each set is observed. Furthermore, the data show a 

low scattering around the first bisector. 

The applicability domain (AD) of the model is 

analyzed by Williams plots (shown in Figure 2). As 

can be seen, there is an outlier compound in the 

training set and all validation compounds located 

between two vertical lines.  

 
Figure 1. Predicted λmax versus experimental plot 

 

The standard residual value of (Trophaeolin O) is 

greater than 3s. This compound can be considered 

as response outlier (Y outlier), which could be 
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associated with errors in the experimental values. 

However, the majority of the compounds within the 

model applicability domain are calculated 

accurately, due to the further the reliability of the 

prediction. 

 

Figure 2. Williams plots of the developed MLR 

model  

 

The reliability and robustness of the proposed 

model have also verified the response permutation 

test, also known as Y-scrambling. The Y-

scrambling test is a helpful tool used to verify the 

possibility that the obtained model could suffer 

from a chance correlation [52]. This procedure 

involves fitting several models. The correlation is 

obtained for the permuted models having R² and Q² 

significantly lower than the original model.  

If the original QSPR model is statistically 

significant, its results should to be significantly 

better than those from permuted data. R² and Q² 

values of the original model were a lot of higher 

than any of the trials using permuted data. It is 

showed in Figure 3 that the results obtained for all 

randomised models are of bad quality compared to 

original model. So, the proposed model is 

statistically significant and strong. 

 
Figure 3. Y-Scramble plot of R² and Q² vs. Kxy for 

random models (Kxy: correlations among the block 

of the descriptors and the experimental data). 

 

III.4. Artificial neural networks (ANN) results 

Another way to search out a relationship between 

the λmax and descriptors, nonlinear modeling using 

descriptors as input and ANN as a regression tool 

was employed. During this nonlinear modeling, a 

network including a totally connected three-layer, 

feed-forward ANN model trained with a back-

propagation learning algorithm was used. The 

descriptors selected by the MLR model were used 

as input variables for the BP ANN model, and λmax 

is the output variable. 

Recall that the two sets (training and validation) 

and the descriptors are those used for RLM model. 

The descriptors are used for the configuration of the 

neural network, which is perfected during the 

learning phase; the operating parameters are 

determined so as to obtain a good match between 

the simulated values and the training data, 

combined with a correct generalization of these 

simulations. 

Before training the network, the number of neurons 

within the hidden layer should be optimized. For 

this purpose, a lot of training of network is 

performed with totally different numbers of hidden 

neurons from one to eight. The root means square 

error for training and validation sets are obtained 

for various numbers of neurons at the hidden layer, 

and therefore the minimum value of RMSE is 

verified as the optimum value. The plot of RMSE 

for the training set and the test set versus the 

number of neurons within the hidden layer has been 

shown in Figure 4. It is clear that six nodes within 

the hidden layer are the optimum value. 
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Figure 4. Plot of RMSE for training (RMSET) and 

validation (RMSEV) sets versus the number of 

nodes in hidden layer 

 

Figure 5 shows a plot of RMSE for the training set 

and validation set versus the number of interations 

that represents the estimation of the extent of the 

training amount. It can be seen from this figure that 

while training the network is performed for the 

training set, with increasing iteration the RMSEtr is 

reduced, at first quickly and later slowly. However, 

the RMSEval for the validation (prediction) set 

initially decreases and then starts to extend after 

approximately 2000 iterations. This position is the 

commencing point of overtraining of network and 

then 2000 are chosen as the number of iteration. 

 
Figure 5. Plot of RMSE for training (RMSEtr) and 

validation (RMSEval) sets versus the number of 

iterations. 

 

Learning the neural network represents a fragile 

balance between all these parameters, hence the 

difficult is to attain it. Table 3 presents the optimal 

structure of the neural network used in this work.  

Table 3. Optimal structure of the neural network. 

Number of entries 06 descriptors 

Number of exits 01 (λmax) 

Number of hidden 

layers 
One hidden layer 

Number of neurons in 

the hidden layer 
06 neurons 

Number of iterations 2000 iterations 

Learning Algorithm 
Retro propagation of the 

error gradient 

Learning function Hyperbolic tangent 

The statistical parameters obtained are regrouped in 

the Table 4. The value of the coefficient R² (= 

98.567 %) indicating excellent agreement between 

correlation and variation of the data. The RMSE of 

the training, the test and the validation sets values 

are 8.275, 11. 979 and 21.561, respectively. 

According to the Figure 6, λmax values calculated 

using ANN model are similar to the experiment 

data. The training set is used to construct ANN 

model. So, the high values of R² and the small 

RMSE suggested that ANN model is able to fit λmax 

of phenolic dyes. The validation set is used to 

confirm the parameters of ANN model. These 

results suggest that ANN model could be used to 

predict λmax of phenolic dyes. 

Table 4. Statistical Parameter for ANN model. 

Training Set  Test Set  Validation Set  

R² 

(%) 
s RMSEtr RMSEtest 

Q²ext 

(%) 
RMSEval 

98.567 8.361 8.275 11.979 90.277 21.561 

 
Figure 6. The plots of λmax predicted by ANN model 

versus the experimental values. 

III.5.Comparisons between MLR and ANN 

methods  

In order to compare the performance of MLR and 

ANN in predicting of λmax of phenolic dyes, the 

descriptors that used in MLR model should be the 

same as the input variables for the generation of the 

network (Figure 7). It can be seen from this 

comparison the dissimilarity between MLR and 

ANN statistical results. So, ANN has more 

efficiency as well as MLR to map the relationship 

between input objects and response values. 
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Figure 7. Comparison between MLR and ANN 

performances. 

III.6. Description of model descriptors 

By analyzing the selected descriptors contained 

physical and chemical properties, it is possible to 

obtain some main structural factors relating to λmax. 

Hence, six descriptors indicated different aspects 

information of the molecular structure. The 

descriptor EHOMO (highest occupied molecular 

orbital energy) is an important parameter for 

modeling λmax [58]. RDF080e and RDF150e 

(Radial Distribution Function-8.0 and 15.0, 

respectively), weighted by atomic Sanderson 

electronegativities. RDF080e and RDF150e 

descriptors are among RDF descriptors, based on 

the distance distribution in the geometrical 

representation of a molecular and constitute a radial 

distribution function code (RDF code) that shows 

certain characteristics in common with the 3D-

Morse code [59]. The presence of RDF080e and 

RDF150e in the model equation illustrates the 

influence of atomic electronegativities on λmax. The 

general form of the radial distribution function is 

represented by: 

    𝑅𝐷𝐹𝑅𝑤 =

𝑓. ∑ ∑ 𝑤𝑖𝑤𝑗𝑒−𝛽(𝑅−𝑟𝑖𝑗)
2

𝑛𝐴𝑇
𝑗=𝑖+1

𝑛𝐴𝑇−1
𝑖=1                      (12) 

Where f is a scaling factor (assumed equal to one in 

the calculations), w is a characteristic properties of 

the atoms i and j, rij is the interatomic distance and 

nAT is the number of atoms in the molecule. The 

exponential term contains the interatomic distance 

rij and the smoothing parameter β, which defines the 

probability distribution of the individual 

interatomic distance; β can be interpreted as a 

temperature factor that defines the movement of 

atoms. w can be an atomic mass (m), the van der 

Waals volume (v), the Sanderson atomic 

electronegativity (e) and, the atomic polarizability 

(p). 

The X2A and X5A (average connectivity index chi-

2 and chi-5, respectively) [60] are calculated based 

on the graph representation of the molecule 

(hydrogen-depleted molecular graph) [60]. A path 

of length represents the connection of two atoms 

with the bond. It relates to the valence electrons and 

the number of atoms in the molecule. The general 

formula for connectivity indices is: 


𝑞
𝑚 = ∑ (∏ 𝛿𝑎

𝑛
𝑎=1 )−1/2𝑘

𝑘=1          (13) 

Where k runs over all of the mth order subgraphs 

constituted by n atoms (n = m + 1 for acyclic 

subgraphs); K is the total number of mth order 

subgraphs present in the molecular graph. The 

product is over the vertex degrees δ of all the 

vertices involved in each subgraph. The subscript 

"q" refers to the type of molecular subgraph and is 

ch for chain or ring, pc for path-cluster, c for 

cluster, and p for path (that can also be omitted). 

The average valence connectivity indices XkAv are 

obtained by dividing each valence connectivity 

index by the number of paths involved in its 

calculation. 

The descriptor R8u+ (GETAWAY descriptor) 

which may be defined as > R maximal 

autocorrelation of lag 8 / unweighted. 𝑅𝑘𝑤 is 

defined as the following equation: 

       𝑅𝑘𝑤 =

∑ ∑
√(ℎ𝑖𝑖−ℎ𝑗𝑗)

𝑟𝑖𝑗
𝑤𝑖𝑤𝑗𝛿(𝑘, 𝑑𝑖𝑗)𝑗>1

𝑛𝐴𝑇−1
𝑖=1       

   𝑘 = 1,2 … ,8                                     (14) 

nAT is the number of molecule atoms; dij is the 

topological distance between atoms i and j; wi is a 

physico-chemical atomic weight; d is the 

topological diameter; δ(k; dij) is a Dirac-delta 

function (δ=1 if dij = k, zero otherwise); δ(k; dij; hij) 

is another Dirac-delta function (δ = 1 if dij = k and 

hij>0, zero otherwise). The atomic properties w used 

for GETAWAY descriptor calculation are atomic 

mass (m), atomic polarizability (p), atomic 

electronegativity (e), van der Waals atomic volume 

(v), and the unit weight (u). In the Eq.10, R8u+ 

shows the positive contribution. R8u+ is one of 

GETAWAY descriptors, which are defined as 

influence/distance matrix R. However, R-

GETAWAY belongs to GEAWAY descriptors that 

have been proposed with the aim of matching 3D 

molecular geometry, atom relatedness, and 

chemical information [59]. In summary, all selected 

molecular descriptors have a clear chemical and 

physical meaning. Hence, it could be concluded 

that λmax of phenolic dyes is closely related to their 

connectivity index, the atomic Sanderson 

electronegativities and 3D information of molecular 

structure. 
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IV.   Conclusion  

MLR was performed to study the relationship 

between λmax and theoretical descriptors. The model 

validation was achieved by using rigorous internal 

and external validation methods.  To prove the 

absence of the chance correlation between 

independent and dependents variables MLR 

modeling was performed on the randomized data. 

The low values of Q²Yscrambling and R²Yscrambling 

confirm that the obtained model not due by chance. 

The ANN modeling was used to handle the 

probable nonlinear relationship between descriptors 

and λmax. The six descriptors that are appeared in 

the MLR model were used as input parameters of 

the network. Comparison of the MLR and 6-6-1 

ANN models showed that the ANN method seems 

to be the best way to select representative 

calibration and test data sets in a validation context. 

Therefore, the ANN method could be used to derive 

statistical models with better qualities and better 

generalization ability than the linear regression 

method. The proposed model in this study provided 

a simple and straightforward way to predict the λmax 

just from the molecular structures and give some 

insight into the structural features related to λmax of 

the phenolic dyes.  
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