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Abstract: The main objective of this work was to synthesize 

hexagonal mesoporous materials such as MCM-41 from optimized 

protocols and to test their effectiveness in adsorption of different 

pharmaceutical pollutants. First, pore size and the specific surface 

area of the base materials have been modified by incorporation of 

amino groups in post-synthesis, by selective extraction of the loaded 

groups and finally by calcination. Subsequently, adsorbent products 

were characterized by their mesoscopic textures, structures and 

controls using different methods: X-Ray Diffraction (XRD), Specific 

Surface Area (BET), Fourier Transform Infrared Spectroscopy 

(FTIR), Thermogravimetric analyses (TGA/DTA) and Zetametry. 

Finally, their adsorption capacities were evaluated using several 

pharmaceutical residues under standard conditions (such as 

Diclofenac, Cefalexin ...). The results obtained during the adsorption 

study showed the effectiveness of these materials for the 

decontamination of aqueous media contaminated with 

pharmaceutical residues. Kinetic and adsorption isotherm studies 

were carried out to clarify the method of binding of the selected 

pharmaceutical pollutants to the tested materials. 
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I .Introduction 

Over the last twenty years, the chemistry of 

inorganic nanostructured materials has been greatly 

expanded with the advent of soft "sol-gel" 

chemistry [1]. Thus, in the early 1990s, Mobil 

scientists proposed the first syntheses of 

mesostructured silicates, ie materials with an 

organized porous system consisting of mesopores 

[2-4] Since then, many research groups have 

patented new families of materials with different 

structures, pore sizes and modes of synthesis: 

several methods are needed in the way of 

manufacturing new organized porous materials 

"MPO" [5]. 

Since, a new family of ordered mesoporous solids 

is widely studied by many researchers from 

different horizons for various applications including 

adsorption and catalysis. In the field of catalysis, 

many studies report information on different 

methods of synthesis, and characterization, so a 

wide variety of catalysts based on different 

mesoporous materials has been implemented and 

used in different types of catalysis (acidic, basic, 

chiral) [6]. 

 In the field of adsorption, specifically in an 

aqueous medium, various mesoporous materials 

such as: MCM-41, MSU, SBA-15, SBA-16, have 

been functionalized by various groups for the 

adsorption of metal ions and various organic 

pollutants. (pharmaceutical substances) [7-13]. 

Pharmaceutical substances are active molecules 

used to induce a favorable effect on health in the 

animal or human organism (diagnosis, treatment of 

diseases, etc) [14]. Their large use is therefore at the 

origin of widespread contamination of aquatic 

environments by a variety of molecules [15]. It was 

reported for the first time in the United States in the 

1970s following the detection of antibiotics in 

wastewater [16]. Ten years later, drug residues were 

detected in Britain. Nevertheless, it was only from 
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the 1990s that knowledge about this environmental 

contamination developed. Pharmaceuticals can be 

considered as persistent and harmful 

micropollutants because of their continuous release 

into the environment and sometimes their intrinsic 

properties (toxic, metabolic, hardly biodegradable 

etc)  [14, 17]. 

Indeed, studies and analysis techniques have 

allowed the detection of quantities of the order of 

μg / l in samples of domestic wastewater and water 

intended for consumption [13-27]. The 

contamination of aquatic environments (surface 

water and those intended for consumption) by 

pharmaceutical residues has therefore been the 

subject of increasing studies over the past ten years 

[13, 15, 17, 28]. 

The main objective of this work is to synthesize 

MCM-41 hexagonal mesoporous material, to 

modify it by: the addition of organic groups, the 

selective extraction and the calcination, then to 

evaluate the adsorption capacity of prepared 

materials on different pharmaceutical pollutants. A 

kinetic study and that of adsorption isotherms will 

also be discussed. 

II .Synthesis and Characterization 

II.1. Materials and reagents 

Cetyltrimethylammonium Bromide 99% (CTAB); 

Smoked Silica (SiO2) 98%; Tetramethylammonium 

Hydroxide (TMAOH); Tetraethylorthosilicate 99% 

(TEOS); N-N, Dimethyl-dodecylamine (DMDDA) 

98% ; Ethanol 96%. 

II.2. Synthesis methods 

MCM-41 Synthesis  

The pure silica MCM-41 was prepared according to 

an optimized protocol [29]. The synthetic gel is 

initially heated to 100°C for 2 days. TMAOH and 

CTAB were added to the distilled water under 

stirring until the solution became clear. The silica 

source was added to the stirred solution for 2 h. The 

gel was transverse in a Teflon-coated autoclave, 

then sealed and placed in the oven at 100°C for 48 

h. The product was recovered by vacuum filtration 

and washed several times with distilled water, then 

dried at 100 °C to obtain a white powder at the end, 

which is called "MCM-41/P" parent material. 

Functionalization of materials 

An amount of MCM-41/P is added to an emulsion 

consisting of water and NN-Dimethyl-

dodecylamine (DMDDA) stirred previously for 5 

min. This mixture is left under agitation for 30 min, 

then transferred to a Teflon reactor and placed in an 

oven set at 120°C for 3 days. The resulting material 

is filtered and washed several times with distilled 

water and then dried at room temperature (20°C): it 

is the amino material "DMDDA-41/A" [29]. 

Other modifications can also be made: the material 

MCM-41/P is calcined directly at 550°C for 7 

hours, resulting in a parent/calcined material 

"MCM-41-P/C". Then, the selective extraction of 

the amine DMDDA is done using a specific solvent 

which is ethanol using a soxhlet gives us the 

deaminated material "DMDDA-41/B". And at the 

end, the calcination of the material A and/or B at 

550°C for 7 h at a heating rate of 1°C/min gives the 

calcined material "DMDDA-41/C". 

II.3. Characterization techniques 

This characterization aims in a very detailed way, 

the study and identification of the textural, 

structural and surface properties, as well as the 

electrochemical properties of the surface of the 

materials obtained. A combination of physico-

chemical (X-ray diffraction, BET, ATG/ATD and 

Zetametry) and spectroscopic (FTIR) techniques is 

performed and their understanding could allow a 

good exploitation of these materials for specific 

applications. 

III .Results and discussions 

III.1. Characterization 

Low angle X-ray diffraction is used to demonstrate 

the arrangement of channels created by surfactant 

micelles. 

Fig 1 shows the diffractograms measured from 0.5 

to 6 degrees (2θ) of the materials DMDDA-41/A, 

DMDDA-41/B and DMDDA-41/C. These three 

materials are compared to MCM-41/P-C which is 

the base material. For each of the materials, there is 

a very intense main peak of about 2.2° [hkl plane 

(100)]  followed by three other low intensity peaks. 

These peaks are similar and characterize a 

preserved and well-ordered mesoporous structure 

with a hexagonal symmetry of pores P6 mm [2, 4, 

30]. 

Maximum slip (MCM-41/P-C and DMDDA-41/B) 

is observed at higher diffraction angles [23, 31] 

resulting in smaller interplanar distances as shown 

in Table 1. 

 

 
Figure 1.  Difractograms of materials (parent, 

amino, deaminated and calcined) 
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The adsorption-desorption isotherms of the parent 

MCM-41 and these modified forms are illustrated 

in Fig 2. This is type IV according to the IUPAC 

classification and hysteresis H1 which is 

representative of structured mesopores [32- 33]. 

 

 
Figure 2.  Isotherm of adsorption / desorption of 

Si-MCM-41 materials 

 

For MCM-41/P-C, there is an increasing slope for 

low relative pressures 0 <(P/P0)<0.3 corresponding 

to a single-layer filling of the surface [29, 34-35], 

followed by a steep slope of the curve for relative 

pressures between 0.3<(P/P0)<0.8, due to capillary 

nitrogen condensation into mesopores. And towards 

(P / P0)> 0.8 there is a multilayer adsorption on the 

surface of the base material. 

For the material DMDDA-41/A, at relative 

pressures (P/P0)<0.4, a single layer filling of the 

surface is obtained and for (P/P0)> 0.5 a multilayer 

adsorption plateau appears. The same observations 

as for the original material are noted for DMDDA-

41/B and DMDDA-41/C. For the last two, the 

relative low pressure plate is almost identical 

((P/P0)<0.5), but the distinction is in the slopes of 

the following plate: steep slope towards the 

calcined material (up to 1 in (P/P0)) unlike the 

deaminated material (0.5 <(P/P0)<0.8). 

In the case of these two materials, the desorption 

does not follow the adsorption creating an H1 type 

hysteresis which closes abruptly at (P/P0)= 0.5 for 

DMDDA-41/C and at (P/P0)=0.4 for DMDDA-

41/B, this suggests a capillary condensation 

phenomenon in mesopores. The width of the 

hysteresis increases (DMDDA-41/C) indicating that 

the pore size distribution is much wider in the 

calcined material (Fig 3) [29, 36-38]. 

 
Figure 3. Distribution of pore diameters of 

materials MCM-41 

The pore diameter distributions shown in Fig 3 

show that the prepared materials have different pore 

diameters.  The traces are all centered, indicating a 

better uniformity of pore diameter.  The widening 

of the pore diameter distribution indicates the 

formation of a less homogeneous pore network.  

The analysis of these data shows large differences 

in the parameters of the four materials.  The results 

of pore surface area, diameter and volume decrease 

remarkably for amino material (the surface area and 

part of the pore volume are occupied by amines), 

unlike MCM-41/P-C. Then, the deamination 

increases these parameters again, while the 

calcination leads to higher values (see Table 1). 

The FTIR spectra of the prepared MCM-41 

materials are shown in Fig 4 where some vibration 

bands are present in the materials: they are similar 

to those of amorphous silica. 

 

 
Figure 4.  IRTF Spectrum of Si-MCM-41 

 

The wide band between 3450 cm-1, characteristic of 

the elongation of the bond (O-H), water and silanol 

groups on the surface. Another vibrating band (O-

H) noted around 1650 cm-1 indicates the presence 

of water in the materials. At 1100 cm-1, an 

asymmetric elongation junction (O-Si-O) of the 

tetrahedral entities SiO4 was observed, while about 

950 and 750 cm-1, two bends characteristic of the 

asymmetric elongation of the bond (Si-O) of the 

same entities present. We also note the presence of 
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a band characterizing the deformation of the angle 

(O-Si-O) of the tetrahedral entities SiO4, this 

around 450cm-1 [29, 35, 39, 40]. 

In addition to these bands, the amino material 

(DMDDA-41/A) records two new bands 

characteristic of the amino groups: the first located 

at 2900 cm-1 characterizes the vibrations (CN), 

while the second one is observed at 1480 cm-1 

resulting from the deformation vibration of the 

bonds (NH) [36, 41, 42]. 

 

 

 

Figure 5. Thermogravimetric Analysis A- (TGA) & 

Differential Thermal Analysis B-(DTA) of the 

different materials 

 

The TAG /DTA thermogravimetric analysis of all 

the materials is represented by two Figs 5A and 5B 

, from which there are three different zones of mass 

variation as a function of temperature [30]. 

The 1st  zone at low temperature (25<T <160°C.) 

corresponds to dehydration of the water 

physisorbed on the surface of the material. The 2nd 

intermediate zone (160<T<600°C) corresponds to 

the decomposition and volatilization of the organic 

compounds (surfactants and amine) in strong 

interaction with the surface of the material 

(covalent and electrostatic bonds). 

The last high temperature zone (600<T<900°C): 

assigned to silica dehydroxylation phenomena 

(condensation of the remaining silanols causing the 

elimination of water molecules) [3, 29, 34, 43]. 

Fig 6 shows the zeta potential curves ζ = f (pH) of 

the different MCM-41 materials in the range of pH 

2 to 11. Each point ζ = f (pH) is the average of the 

results obtained on electrophoretic mobility 

measurements from 100 to 500 p at a zeta potential 

between 5 and 8 mV. The pH for which the zeta 

potential is zero (no movement of particles under 

the effect of the electric field) is called the 

isoelectric point (IPE). 

 

 

Figure 6. Zeta potential of MCM-41 materials 

modified by DMDDA 

 

The parent material MCM-41/P has positive 

potentials between 2 <pH<5 and negative potentials 

from pH=5.5. For DMDDA-41/A, it has positive 

potentials between 2 <pH <8.5 and negative 

potentials from pH=8.5. Then, DMDDA-41/B has 

positive potentials between 2 <pH <6 and negative 

potentials from pH=6.1. And for the calcined 

material DMDDA-41/C, it has positive potentials 

between 2 <pH <3.6 and negative potentials from 

pH=3.6 [19, 36]. 

All the data from the characterization of the 

different prepared materials are grouped in Table 1. 
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III.2. Adsorption study 

Different adsorption tests were performed on three 

(03) active ingredients selected as pollutants for the 

different mesoporous materials MCM-41, calcined 

MCM-41, functionalized MCM-41 (DMDDA), 

deaminated MCM-41 and functionalized calcined 

MCM-41(DMDDA). Under magnetic stiring, each 

material is added to 20 ml of drug solution at a 

diluted concentration, then after filtration through a 

filter of 0.45 μm, the filtrates are analyzed by UV-

Visible spectrophotometry to measure absorbance 

at λmax= 236, 262 and 276 nm for Prednisolone, 

Cefalexin and Diclofenac respectively. 

It should be noted that the functionalized and then 

deaminated form DMDDA-41/A has the greatest 

binding capacity with respect to Prednisolone and 

Cefalexin, followed by DMDDA-41/A (amino 

form) then MCM-41/P (parent form) and finally the 

two calcined forms of MCM-41. 

In the case of Diclofenac, the amino form 

DMDDA-41/A has the highest adsorption affinity, 

followed by the deaminated material, then the 

parent and lastly the calcined forms. These 

variations are due to the physico-chemical 

properties of the materials in terms of specific 

surfaces, porosity and most importantly the surface 

load as a function of existing groups (the amino 

material DMDDA-41/A is loaded with NH2 

compared to DMDDA-41/B).  

Fig 7 illustrates the kinetics study of the four 

pollutants selected on the DMDDA-41/B (the 

material that presented the maximum retention 

capacity). This study is necessary to predict the 

equilibrium time that will be taken into account for 

further work. According to the figure, the 

appearance of the curves presents two areas: 

 From 0 to 50 min: zone that reveals rapid 

adsorption and occurs at accessible sites on the 

surface. 

 From 50 to 120 min: the adsorbed quantities 

evolve more slowly, due to the diffusion inside 

the pores of the material, until reaching a plateau 

corresponding to the equilibrium at the end of 120 

minutes [22, 26, 44-48]. 

 

 
 

Figure 7.  Kinetics of elimination of active 

ingredients on DMDDA-41/B 

 

The same findings were noted for the amino 

material DMDDA-41/A. It is also noted that there 

are no major differences between the two materials 

(the nature and especially the charge of their 

specific surfaces allow them to have an almost 

typical attractive behaviour towards the chosen 

active ingredients).  

 

 
 

Figure 8.  Kinetics of elimination of active 

ingredients on DMDDA-41/A 

 

Table 1. Characterization Data of Si- MCM-41 Materials 

Materials 

X-Ray diffraction BET (at 77°K) TGA/DTA (Mass loss %) Zetametery 

2 

(°) 

d100 

(nm) 

a0 

(nm) 

SBET 

(m2/g) 

dP 

(nm) 

Vp 

(cm3/g) 

1 st 

Zone 

2 nd 

Zone 

3 rd 

Zone 

PIE (isoelectric 

point) 

DMDDA-41/C 2.02 4.48 5.17 1246 10.6 1.86 7.02 2.76 0.87 3.6 

DMDDA-41/B 2.10 4.21 4.86 387 5.84 1.07 15.67 45.97 1.63 5.8 

DMDDA-41/A 1.97 4.39 5.07 74 - 0.28 3.51 70.67 3.59 8.7 

MCM-41/P-C 2.28 3.87 4.47 1147 3.22 0.85 8.23 48.41 1.43 5.6 
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The adsorption process is best described by 

studying first- and second-order pseudo-kinetic 

models. For pseudo-first order process, the 

Lagergren rate equation is the one generally used: 

 

𝐿𝑛 (𝑄𝑒 − 𝑄𝑡) = 𝐿𝑛 𝑄𝑒 − 𝑘1𝑡                             (1) 

 

Where Qe is the equilibrium adsorption amount, Qt 

the adsorption amount at time t and k1 is the 

pseudo-first order rate constant. 

The pseudo-second order process can be expressed 

as the equation: 

(𝑡
𝑄𝑡

⁄ ) =  [
1

𝑘2 × 𝑄𝑒
2] +  [

1

𝑄𝑒
]                                   (2) 

 

Where Qe is the equilibrium adsorption amount, Qt 

the adsorption amount at time t and k2 is the 

pseudo-second order rate constant. 

Figs 9A and 9B and Figs 10A and 10B represents 

the linearization of the two kinetic models for 

pharmaceutical pollutants and the parameter values 

of the two kinetic models applied to their removal 

are grouped in Table 2. 

 

 
 

Figure 9.  Application of the pseudo-first order (A) 

and pseudo-second order (B) model to the 

elimination of active ingredients on MCM-

41/DMDDA-B 

 

 

Figure 10. Application of the pseudo-first order (A) 

and pseudo-second order (B) model to the 

elimination of active ingredients on MCM-

41/DMDDA-A 

According to the kinetic constant values, the 

kinetics of pharmaceutical pollutants follow the 

pseudo second order model (R2 ≈ 0.99), rather than 

the pseudo first one. 

Batch solutions of the selected active ingredients 

were prepared separately and then tested, each with 

the deaminated material DMDDA-41/B and then 

the amino material DMDDA-41/A. These tests are 

performed to determine the amount of adsorption 

achieved according to the modifications made and 

to describe the adsorption process in heterogeneous 

systems. The results obtained can be adjusted by 

different isothermal equations, including those 

worked with: the Langmuir model, Freundlich and 

Sips [32].  

Langmuir assumes that adsorption is done in a 

monolayer on the surface of the solid, Freundlich's 

considers that there are different types of adsorption 

sites distributed when at Sips, it is an isotherm that 

allows to simulate both the Langmuir model and 

Freundlich's behaviours. Mathematical expressions 

of the equations are as fellows [21]: 

𝑄𝑒 =  
𝑄𝑚𝑎𝑥 ×𝐾 × 𝐶𝑒

1+𝐾 × 𝐶𝑒
                                                      (3) 

𝑄𝑒 = 𝐾 𝐶𝑒

1
𝑛⁄

                                                                (4) 

𝑄𝑒 =  
𝑄𝑚𝑎𝑥 × (𝐾 × 𝐶𝑒)𝑛

1+ (𝐾 × 𝐶𝑒)𝑛                                                  (5) 

Where Ce is the equilibrium concentration of solute 

in solution (mg/L); Qe is the amount of solute 

adsorbed per unit mass adsorbent (mg/g); Qmax is 

monolayer adsorption capacity, (mg/g); b is the 
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constant related the free energy of adsorption; K is 

the constant indicative of the relative capacity of 

the adsorbent, (L/g); 1/n is a constant indicative of 

the intensity of the adsorption. 

The isotherms for adsorption of pharmaceutical 

pollutants by the materials DMDDA-41/A and 

DMDDA-41/B are shown in Figs 11 and 12. 

 

Figure 11. Adsorption isotherms of Cefalexin, 

Diclofenac and Prednisolone on MCM-

41/DMDDA-A 

Figure 12.  Adsorption isotherms of Cefalexin, 

Diclofenac and Prednisolone on MCM-

41/DMDDA-B

 

Using the classification of adsorption isotherms, 

those obtained are of type L "Langmuir". This type 

is characterized by a decreasing slope as the 

equilibrium concentration increases, due to the 

decrease in the number of adsorption sites, 

following the gradual covering of the surface of the 

various materials. In this type of adsorption, there is 

no interaction between the adsorbed molecules: this 

is a physisorption [22, 44 -52]. 

The representation of the adsorption isotherms is 

markedly better by the Sips model in the fixation of  

 

 

the three pharmaceutical polluants by DMDDA-

41/B (R2> 0.97) and by the Langmuir model in the 

fixation of the same polluants by DMDDA-41/A 

(R2> 0.95). 

The study of the linearizations of the Langmuir, 

Freundlich and Sips models (Langmuir-

Freundlich), defined above, gives the various 

parameters of the three models that we have 

gathered in Table 3. 

 

 

Table 2. Parameters of the two kinetic models applied to the removal of the three organic pollutants 

Materials Drug 

Pseudo 1st ordre Pseudo 2nd ordre 

k1 (min-1) Qe (mg/g) R2 
k2 

(g.min-1.mg-1) 
Qe (mg/g) R2 

DMDDA-41/A 

Céfalexine 0.002 13,704 0,218 0,001 35,701 0,987 

Diclofénac 0.003 11,64 0,680 0,002 114,942 0,999 

Prednisolone 0.002 17,884 0,230 0,112 8,992 0,994 

DMDDA-41/B 

Céfalexine 0.004 12,591 0,904 0,002 37,537 0,998 

Diclofénac 0.007 23,757 0,805 0,002 101,214 0,999 

prednisolone 0.003 6,908 0,269 0,021 90,252 0,999 
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IV . Conclusion 

The characterizations show that the parent material 

obtained is stable and the modification of this 

material by the addition of amines has not altered 

its basic structure: the porous diameter and the 

specific surface area of the materials (amine and 

deaminated) are greater than those of the parent 

material, infrared spectroscopy confirms the 

incorporation of the NH2 amine groups and thermal 

analysis proves the resistance of the prepared 

materials. . 

The deaminated material has a high binding 

capacity of Diclofenac (Qe=140.190mg/g), 

Prednisolone (Qe= 144.332 mg/g), and Cefalexin 

(Qe = 193.539 mg/g). Also, the amino material 

presents important values in the fixation of the 

selected polluants. 

For the three pharmaceutical pollutants, the 

adsorption perfectly follows the pseudo-second 

order model than the first order one, with R2 = 0.99. 

The representation of the adsorption isotherms of 

the two materials, DMDDA-41/A and DMDDA-

41/B, is significantly better by the Langmuir model 

in the case of Diclofenac and Cefalexin, and by the 

Sips model for Prednisolone. Also, adsorption of 

the micropollutant is more effective at low 

concentrations. 

Based on the results of the effects studied, the 

DMDDA functionalized materials give many 

perspectives in the study of pharmaceutical 

pollutants. With these results, we can: 

 Demonstrate which of the different synthesized 

materials will have a significant absorption 

capacity on a wide variety of pharmaceutical 

pollutants and that this capacity is better in 

complex solutions. 

 Assume that the chosen material can provide an 

effective solution for the treatment of wastewater 

treatment plant effluents. 

 Contribute to the development of existing 

wastewater treatment techniques and their 

performance, in particular in the treatment of 

effluents containing organic pollutants of 

pharmaceutical or cosmetic origin. 

 Exploit other opportunities to improve the 

biodegradability of pharmaceutical residues, 

including biological processes. 
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