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Abstract: The quantitative structure-property relationship QSPR 

method using Multiple Linear Regression MLR and Partial Least 

Squares PLS methodologies was performed for 160 organic 

compounds (hydrocarbons, branched alkanes, branched and 

unbranched alkenes, and alkynes). The MLR and PLS methods were 

employed to explore the correlation   between the molecular 

descriptors which are the structural representation while the critical 

temperature Tc is the property representation. Using Dragon 

descriptors, this study was aimed at developing a predictive and 

robust QSPR models for predicting Tc. According to the squared 

correlation coefficients (R2 =0.942 and 0.941), standard error (s 

=0.88 and 0.797) and the leave-one-out cross-validation correlation 

coefficients (Q2
Loo = 0.834 and 0.932), for the MLR and PLS methods 

respectively, the results demonstrated almost identical qualities and 

good predictive ability for both the MLR and PLS models. 

 

Key Words: 

Aliphatic Alkanes;  

Statistical Model; 

hydrocarbon mixture;  

MLR;  PLS. 

 

 

 

 

 

 

I. Introduction 

 
Estimating and determining the critical properties 

of pure compounds is of critical importance for 

finding out thermodynamic and volumetric 

properties when using corresponding state 

correlations. These parameters have a direct 

application in selecting the operating conditions of 

substances in gas or liquid phase, or in other aspects 

during production [1]. With regard to the different 

calculations of critical point, we find that, the 

calculations of critical temperatures and pressures 

for hydrocarbon mixtures from an equation of state 

with renormalization group theory corrections are 

performed [2]. We also find several works that 

presented an efficient and robust algorithm for the 

calculation of gas-liquid critical point of multi- 

 

 

 

component petroleum fluids [3]. Other techniques 

have improved the methods by introducing in their 

methods new groups which allow describing the 

various molecular structures and their isomers [4].  

A group of researchers presented analytical partial 

derivative equations required for multi-component 

critical point calculation [5]. Based on all of the 

above mentioned, it seems necessary to estimate the 

critical temperature, which is a representative of 

maximum temperature at which a gas can be 

converted into a liquid by an increase in pressure. 

In addition to that, we find thermal limits CTmax 

and CTmin are often quantified in terms of critical 

temperatures using a dynamic measurement [7]. 

Measurements of thermal limits are increasingly 
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used to predict organismal responses to climate 

change and climatic gradients, and empirical 

estimates of upper and lower thermal limits are now 

available for a variety of ectotherms [8-10]. Several 

types of cycloaliphatic hydrocarbons such as 

cyclopentane, methylcyclopentane and cyclohexane 

are found extensively in crude oils and some 

petroleum products [11]. Hydrocarbon mixtures are 

often supposed as systems which their phase 

behavior is easy to correlate and predict if their 

critical points are available [12]. On account of 

their wide variety of sources, hydrocarbons occur as 

complex mixtures in the marine environment [13-

17]. Quantitative structure- activity relationship 

(QSAR/ QSPR) are mathematical models designed 

for the correlation of various types of biological 

activity, chemical reactivity, equilibrium, physical 

and physicochemical properties with electronic, 

steric, hydrophobic and other factors of a molecular 

structure of a given series of compounds [18]. 

QSPR uses chemometric methods to describe how a 

given physicochemical property varies as a function 

of molecular descriptors describing the chemical 

structure of the molecule [19]. Chemometrics has 

provided new insight into the philosophy and 

theory behind QSPR modeling [20, 21]. QSPR has 

received significant contributions from various 

research schools [22, 23]. Application of 

quantitative structure-property relationship (QSPR) 

models in prediction and estimation of physical 

properties of materials is widely developing [24, 

25]. In QSPR, advanced mathematical methods 

(Genetic algorithm, neural networks, and etc.) are 

used to find a relation between property of interest 

and the basic molecular properties which are 

obtained solely from the chemical structure of 

compounds and called "molecular descriptors" [26]. 

Also, in drug design and medicinal chemistry, 

QSAR is one of the treasured implements and most 

essential areas in chemometric which are 

comprehensively used [27, 28]. The corresponding 

experimental data of critical temperature at 1atm 

were obtained from the literature. It is worth noting 

that the critical temperature values span between 

190.5 and 750 K. Exactly 160 (hydrocarbons, 

branched alkanes, branched and unbranched 

alkenes and alkynes) were studied [29]. The 

structures of the 160 investigated molecules were 

pre-optimized by means of Molecular Mechanics 

Force Field, followed by calculations of semi-

empirical method [30]. The statistic technique 

multiple linear regression is used to study the 

relation between one dependent variable and 

several independent variables. It is a mathematic 

technique that minimizes differences between 

actual and predicted values [31].  The multiple 

linear regression model (MLR) was generated using 

the leave-one-out (LOO-CV) cross validation 

method with the help of  Molegro Data Modeller 

(2009) V. 2.1.0 to predict critical temperature Tc. 

According to the statistical view point the ratio of 

the number of samples (n) to the number of 

descriptors (m) should not be too low. Usually, it is 

recommended that n/ m ≥ 5 [32]. The PLS method 

has two objectives: to approximate the matrix X of 

molecular structure descriptors to the matrix Y of 

dependent variables and to maximize the 

correlation between them. The main advantage of 

this method in comparison to MLR is that 

interrelated variables can be included in the model 

[33]. This ought to lead to richer models with better 

predictive ability [34]. Partial least square analysis 

was used to check the robustness of the model 

generated by the multiple least square regression 

analysis [35]. PLS regression can work well in 

highdimensional regressions where the number of 

predictors exceeds the number of observations and 

set it apart from other predictive methodologies 

[36]. PLS regression can also be used as a 

supervised classification method [37]. A recent 

study developed a fast CV based on the Bouligand 

influence function (BIF) for kernel-based 

algorithms [38]. The main objective of this work is 

the applications and methodologies involved in 

QSPR focused on obtaining models of the critical 

temperature, for 160 aliphatic alkanes using 

calculated constitutional descriptors, atom centered 

fragments and topological descriptors. In addition 

to that, a preview and comparison of the models 

resulting from the statistical calculations using 

leave-one-out (LOO-CV) cross validation, followed 

by a discussion of the results.  

 

II. Methodology 

 

II.1. Mathematical QSAR models 

 

QSAR models first summarize the mathematical   

relationship between chemical structures and 

physico-chemical property; second   predict the 

property of new chemicals using Multiple Linear 

and Partial Least Squares Regression analysis. 

These models are presented by the following form   

Ŷi = b0 + b1xi,1+ b2xi,2+……… bkxi,k 

Where Ŷi is the predicted property while b values 

come from statistical software and x are the 

variables (numerical descriptors). 

At first, the generated numerical descriptors that 

encode structural information for the compounds in 

the data set were calculated. Then, MLR and PLS 

statistical analysis were used to build the QSPR 

models. Second comparing these models with each 

other and third analyzing the explanatory power of 

these models. The QSPR study was performed in 

four fundamental stapes:  

(1) Selection of data set;  

(2) Calculation of molecular descriptors;  

(3) Multiple linear (ML) and partial least squares 

(PLS) regression statistical analysis;  

(4) Model validation techniques;   

https://www.scientific-computing.com/press-releases/molegro-data-modeller
https://en.wikipedia.org/wiki/Chemical_structure
https://en.wikipedia.org/wiki/Predictive_inference
https://en.wikipedia.org/wiki/Predictive_inference
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The models were evaluated using statistical 

significance characterization, correlation coefficient 

R2, leave-one-out cross validation parameter Q2, 

external cross validation Q2
ext, adjusted R2

adj, 

standard derivation s and root mean square error 

RMSE. The robustness, accuracy and predictive 

ability of the models were carried out using external 

cross validation coefficient. Model applicability 

was further examined by plotting predicted data 

against experimental data for all the compounds. 

For example, and not exclusively, the two statistical 

parameters, Q2 and RMSE, can be calculated 

according to the following equations: 

 

 
 

Where Yiis the ith experimental Tc value, Yipredis the 

ith predicted Tc,Ymeanis the mean of the experimental 

Tc. The summation is over all patterns in the 

analysed data set.  

 

 
 

Where n = number of compounds, pexp is the 

experimental value, ppred is the predicted value 

 

 

II.2. Structure and molecular descriptors 

 

The selected molecules were pre-optimized by the 

Molecular Mechanics (MM+) in the Hyper Chem 

7,5 program. The minimized structures were refined 

using the semi-empirical PM3 method at a 

restricted Hartree Fock level with no configuration 

interaction, applying a gradient norm limit of 0.01 

kcal Ǻ -1 mol-1 as a stopping criterion. Then the 

structures were used as input for the generation of 

molecular descriptors. The total number obtained 

after the calculation is122 (2D) descriptors from 

three different blocks:  30 constitutional 

descriptors, 13 atom centered fragments and 79 

topological descriptors were   used to characterize 

the set of 160 aliphatic alkanes. The descriptors 

calculated using the DRAGON (version 5.4) 

software. These descriptors were analyzed to check 

and remove constant or near-constant variables. The 

remaining descriptors were used to build the X-

matrix in the MLR and PLS regression analysis, as 

follows: 14 constitutional descriptors, 

9atomcentered fragments and 35 topological 

descriptors. 

 

II.3. Methodology QSPR 

 

The proposed methodology QSPR is illustrated in 

Figure 1. Developing QSAR models starts with the 

collection of the experimental values for   proper of  

interest, taking into consideration the source and 

quality of this data. This is in order to avoid 

everything that has a negative impact on the 

validity and robustness of the model.  

 

 
 

Figure 1. Steps of QSPR proposed methodology 

 

II.4. Training and test set generation. 

 

In a QSAR / QSPR study, generally, the quality of a 

model is expressed by its fitting ability, and 

prediction ability, and of these the prediction ability 

is the more important. In order to build and test the 

model, a several procedures can be adopted for the 

selection of the training and test sets, whereas the 

training/test sets were built taking randomly 30 % 

of each cluster as the test set, while the remaining 

70 % were used as the training set. 

III. Method and discussions 

In order to build and test the models, a data set of 

160   compounds was separated into a training set 

of 111 compounds, which were used to build the 

model and a test set of 49 compounds, which were 

applied to test the built models. These compounds 

were quantified with the help of molecular 

descriptors, calculated with the DRAGON 

software. All regression calculations were 

performed with the aid of the Molegro software 

package. Based on the descriptors matrices of MLR 

and PLS for three molecular blocks constitutional 

descriptors, atom centered fragments 

andtopologicaldescriptors, one can calculate their 
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QSPR analyzes,by searching for the most 

significant descriptors which have a strong degree 

of correlation with the studied propertyTc. 

 
III.1. Multiple linear regressions  

 

A. Constitutional descriptors block 
 

Figure 2 shows the experimental versus predicted 

values by MLR models. It shows also the critical 

temperature Tc (exp) versus predicted Tc (pred) in 

the constitutional block, the atom centered fragment 

block and the topological description block. To 

establish quantitative relationships between critical 

temperature Tc and selected descriptors, our array 

data were subjected to a multiple linear regression. 

Many attempts have been made to develop a 

relationship with the indicator variable of critical 

temperature Tc, the best relationship obtained by 

this method is only one corresponding to the linear 

combination of several descriptors featured in the 

following equation (3) and their interpretations are 

shown in Table 1. 

 

Tc = 5.14185 + 292.314 * Sv - 254.725 * Sp - 

71.2192 * Ms + 8.52197 * NBO - 4.0058 * SCBO - 

11.3033 * RBF - 1.48307 * nC                                                                                                                                                                     

(3) 

 

B. Atom centered fragments block  

 

The following equation represents the MLR model 

of the critical temperature Tc for the atom centered 

fragments block. In this calculated model we find 

several molecular descriptors included the 

following equation (4) and their abbreviations are 

shown in Table 1. It should be noted that the 

symbols associated with these descriptors are:  R: 

represents any group linked through carbon. X: 

represents any electronegative atom (O, N, S, P, Se, 

halogens). #:  represents a triple bond   .a the 

superscript represents the formal oxidation number. 

 

Tc =   4.29504 -238.504 * "C-001" - 138.657 * "C-

002" - 51.7308 * "C-003" + 60.0144 * "C-004" - 

35.1493 * "C-015" + 22.6861 * "C-016" + 78.5786 

* "C-022" + 80.2691 * "H-046" + 2.4934 * "H- 

047"                                                                      (4)                                                                                                                       

 

C. Topological descriptors block  

  

The MLR equation of topological descriptors bloc 

is composed by the several descriptors featured in 

the following equation (5) and their meanings are 

shown in Table 1. 

Tc = 3.72571 + 1.77888 * ZM1V + 1.69172 * 

SMTI + 0.0571746 * SMTIV + 5.53309 * D/D - 

0.719466 * S0K + 0.89795 * CSI - 0.543406 * 

CENT - 0.176002 * HyDp - 0.937503 * Wap - 

5.61055 * QW                                                      (5)  

 
 

 
 

 
 

Figure 2. Plot of Tc Experimental vs. Tc predicted 

values by MLR models 

 
III.2.Partial least square regressions 

 

Figure 2 shows the experimental versus predicted 

values by PLS models. It shows also the 

criticaltemperature Tc (exp) versus predicted Tc 

(pred) in the constitutional block, the atom centered 

fragment block and the topological description 

block. 

 

A. Constitutional descriptors block 

 

The PLS equation of constitutional descriptors bloc 

is composed by the several descriptors featured in 
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the following equation (6) and their meanings are 

shown in Table 1. 

 

 

 

Tc =7987245.5854 -1246.9860 Sp+3688.1330Ms-

190.6498nat+21867947.05274 nSk -588.5911 

Nbo+190.6494 Nh                                               (6)                                                                                                          

 

B. Atom centered fragments block 

 

The PLS model equation of atom centered 

fragments block is composed by the several 

descriptors featured in the following equation (7) 

and their abbreviations are shown in Table 1. 

 

Tc = -32.5633   -279.7931*"C-001"-166.4402*"C-

002 -71.7958*"C-003" +51.8108*"C-004" -

25.2363* "C-015+4.9583*"C-016+92.7512* "H-

046                                                                      (7)     

                                                                                     

C. Topological descriptors block 

 

The PLS model equation of Topological descriptors 

block is composed by the several descriptors 

featured in the following equation (8) and their 

interpretations are shown in Table 1.  

 

Tc =- 12.70139+ 3.8384*ZM1V+0.08276*SMTI-

0.26197*SMTIV+2.6429*D/D 

+1.1507*S0K+1.0118*CSI-0.3254*CENT       (8) 

 

 
 

 
 

 
Figure 3. Plot of Tc Experimental vs. Tc predicted 

values by PLSmodels 
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Table 1. The Descriptors found in various calculated models 

Category of descriptors Name of the descriptors 

 

 

 

Constitutional descriptors 

 

The sum of atomic van der Waals volumes(  Sv ) 

The  sum of atomic polarizabilities (Sp) 

The  number of atoms(  Ms ) 

Number of non-H bonds(  Nbo) 

Sum of conventional bond orders (H-depleted) (SCBO) 

Rotatable bond fraction(RBF) 

Number of Carbon atoms(nc) 

Number of atoms(nAT) 

Number of non-H atoms(nSK) 

Number of Hydrogen atoms(nH) 

 

 

Atom-centred fragments descriptors 

 

Described byCH3R / CH4(C-001) 

Described byCH2R2, (C-002) 

MeansCHR3(C-003) 

MeansCHR4(C-004) 

Means =CH2(C-0015) 

Means =CHR(C-0016) 

which means #CR / R=C=R(C-0022) 

MeansHa attached to C0(sp3) no X attached to next C(H-046) 

MeansHa attached to C1(sp3) / C0(sp2) (H-047 

 

 

Topological descriptors 

 

The  sum of atomic van der Waals volumes(ZM1V) 

The sum of atomic polarizabilities (SMTI) 

Number of non-H bonds(D/D) 

Sum of conventional bond orders (H-depleted) (S0K) 

Rotatable bond fraction(CSI) 

Hyper-distance-path index(HyDp) 

All-path Wiener index(Wap) 

Quasi-Wiener index (Kirchhoff number) (QW) 

 

III.3. Discussions  

The statistical worthiness of the constitutional 

descriptors block  developed model was evaluated 

in terms of square of the correlation coefficient, 

where R2 (MLR=0.942  and PLS=941) values 

explain 94 % variance in critical temperaturesTc, 

which indicates a measure of good fit by the 

regression equations. We notice from the 

comparison Table 2 that the slight difference in 

(MLR) R2 (0.942) and Q2
Loo (0.834) is equal to 

0.108 it can be considered acceptable, these values 

implies high prognostic ability of themodel. 

Similarly in the (PLS) analysis, there is a  very 

small difference in R2 (0.941) and Q2
Loo(0.932) 

values, further ascertains the robustness of the 

model.  

 

Table 2. Results comparison Table 

 

 

 

It is worth noting that the PLS model is completely 

satisfactory in the fitting and has high predictive 

power compared to the MLR model. The LOO-CV 

(leave-one-out) cross-validation highlights that the 

model is stable, not obtained by chance, in fact the 

difference between R2  and Q2
Loo is small: 0,9 %. 

However MLR is high is estimated: 10%. It is not 

limited to that only, but we also see that the number 

of variables (descriptors) in the PLS model 

equation (6) is less than the number in the MLR 

model equation (3). As for the value of 

RMSE=0.20.The final model has the highest 

correlation coefficient (0.94), confirming the 

robustness of the model and also the PLS model 

was cross validated and the Q2
Loo value of (0.932) 

depicted the strength of the model, it satisfy the 

conditions: (1) R2> 0.7, (2) Q2
Loo> 0.6, (3) 

difference between R2 and Q2
Loo smaller than 

0.1[39, 40]. Based on all of the above, it can be said 

that the MLR model is less stable than PLS 

model.The value‘s’ is the standard (deviation) error 

of the regression model, and it should be low for 

better QSPR model generation; this is an 

approximation of how precisely the model will 

predict unknown ‘Y’ values. The value of ‘s’ for 

the best PLS model is 0.797  while for MLR is 

0.88. It signifies that regression with an ‘s’ value of 

0.8  should predict Y values with a standard error of 
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0.8  units. The large value of the standard deviation 

is due to the difference between the experimental 

values of Tc, which span between 190.5 and 750 K.  

As for the models atom centered fragments and 

Topological descriptors blocks, for both MLR and 

PLS regression, we find that the validation criteria, 

leave-one-out cross-validated Q2
Loo. According to 

Hawkins et al., a valid statistical model should have 

high Q2 value (Q2
Loo>0.5) and is evidence of the 

high predictive ability of the model [39, 40]. High 

or acceptable values of the two parameters, Q2
Loo 

and R2, may be obtained as long as a moderate 

overall correlation is maintained between the 

observed and predicted Tc values even if there is a 

considerable difference between them. Depending 

also on the conditions[39, 40], as it is noticed that it 

is achieved in the mentioned models except the 

MLR model of atom centered fragments block, 

therefore, it can be said that the models are 

acceptable considering the values of the traditional 

parameters (Q2 and R2). 

 
IV. Abbreviation list 

QSPR. - quantitative structure-property relationship 

QSAR. - quantitative structure-activity relationship 

MLR t. - Multiple Linear Regression apt. - apartment 

PLS. - Partial Least Squares 

Tc. - critical temperature  

R2. - squared correlation coefficients 

CT. - thermal limits  

LOO-CV. - leave-one-out  cross validation 

BIF. - Bouligand influence function  

Q2. - leave-one-out cross validation parameter 

Q2
ext. - external cross validation  

R2
adj. - adjusted squared correlation coefficients 

s. - standard derivation  

RMSE. -root mean square error  

 

V. Conclusion 

In this study, we have compared the performance 

of, MLR and PLS in (Aliphatic Alkanes) QSPR 

study, using the selected descriptors, which can be 

easily generated from the Dragon software. The 

obtained results showed that:  

 The two constructed of PLS and MLR 

constitutional block models have a good 

reliability (R2train > 0.94, Q2train > 0.834) and 

predictability (Q2
ext> 0.79);  

 The overall performance of prediction was 

found to be around 94% in case of PLS and 

MLR; 

 The difference between R2 and Q2
Loo is much 

less than 0.1 and that's what makes us say that 

PLS is significant predictive power and 

reliability as compare to MLR technique; 

 Four other models have also been built, 

represented by PLS and MLR models of atom 

cent ered fragments and Topological 

descriptors blocks that can be considered to 

have acceptable predictive power. 
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