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Abstract:In the smart grid, the data collected from the smart meters 

can be used to develop an accurate energy consumption forecasting. 

A close prediction is beneficial in providing a good energy 

scheduling, making balance between demand and generation of 

power which results in reducing the production costs of the energy. 

Several models are used to give an accurate energy consumption 

forecast. One of these models is long short-term memory (LSTM). 

LSTM model may be combined with other models to give better 

results.  On the other hand, LSTM has a drawback of selecting the 

hyperparameters values. In this paper, we optimize a long short-term 

memory autoencoder (LSTM-AE) model with the metahuristic 

algorithm Particle Swarm Optimization (PSO) in order to obtain the 

optimal parameters for the model to give better results in forecasting 

and then compared to other forecasting models. The evaluation 

metrics used for the comparison are mean squareerror (MSE) and 

root mean square error (RMSE). 
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I. Introduction  

 

With the fast technology development in smart 

grids and smart buildings, an efficient load 

forecasting has an important role to give a better 

concept of smart cities [1].  

The role of the load forecasting is to predict the 

future energy load consumption for better 

scheduling and management of the power system. 

Many research activitieshave been done in the 

purpose to find accurate load forecasting models 

that affect the economy and the reliable power 

system operations. An efficient forecasting model 

will avoid the blackouts that may occur in 

supplying power to the consumers [2]. Moreover, 

the load forecast allows the good scheduling and 

planning, maintenance, contractevaluation and cost 

adjustment [3] [4]. In addition to the power system 

operations management, a good load forecasting 

has a great impact on the economic side since the 

power generation will be managed and the 

production cost will be reduced.  

For an efficient load forecasting, several works 

have been done to find an appropriate and efficient  

 

 

model for forecasting. As traditional linear 

statistical methods, the autoregressive (AR), 

moving average (MA) and the autoregressive 

integrated moving average (ARIMA) were 

investigated for time series forecast due to their 

assumptions that data are stationary, linear with 

particular statistical distribution [5.6]. The need to 

find an accurate load forecasting model is always 

present. Lately, researchers focused on the deep 

learning approaches. The artificial neural networks 

ANN are able to capture data behavior in nonlinear 

complex patterns and large data [7-9] deep learning 

can learn efficiently complex input-output relations 

due to the large number of hidden layers. In [10] 

stacked AE has been used for prediction to reduce 

noise disturbance from the energy data. Recurrent 

Neural Networks (RNN) especially Long Short –

term Memory (LSTM) , developed by Hochreiter et 

Schmidhuber [11], are used lately for forecasting 

due to their internal memory that allows the model 

to learn long-term dependencies in sequential data 

as energy load and demand[12]. 

Recently, some studies have introduced a 

hybridation of methods to forecast the load energy 
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consumption. In [13], the combination of 

convolutional neural network CNN and LSTM to 

predict the energy consumption where in [14] the 

CNN was integrated with Bi-directional LSTM for 

forecasting. All the models have given the best 

results but still the error rate high to be used for a 

good forecasting.  

As all the other models, LSTM has different hyper-

parameters that should be set. Some of these 

parameters are the number of layers, the time lag or 

window size and LSTM hidden unit per layer. The 

window size has direct effect on the accuracy of the 

LSTM model since it eliminates the redundant 

features [15]. Yet, setting these parameters to the 

optimal value is quiet difficult regarding time and 

computation limitations to investigate all the 

parameter space. Obtaining the optimal parameters 

for LSTM has been the objective of several studies.  

 From these studies, we have focused on the 

hybridation and optimization of the LSTM for its 

good performance in energy consumption 

prediction. We introduced an optimized hybrid 

model of PSO LSTM-AE for load forecasting. The 

Particle Swarm Optimization (PSO)is a 

metaheuristic algorithm that minimizes of 

maximizes the cost functions [16], to get an 

optimized model for load forecasting. We 

emphasize our work objective on optimizing the 

window size and hidden units in the LSTM layers 

that are related to detect temporal patterns of the 

dataset. Setting the time lags, window size, is 

important in designing LSTM method. When it is 

small, significant information may be ignored and 

when it is big, the unnecessary signals will act as 

noise.   

The remainder of the paper will be as follows: 

section II will be about the related works on the 

load forecasting. Section III introduces the 

background for LSTM, LSTM-AE, PSO and the 

evaluation metrics. Section IV presents the model 

methodology of our work and the dataset that are 

used. Section V provides the experimental results 

and discussions. Finally, section VI concludes the 

results and proposes a future research.  

 

II. Related works 

Energy load forecasting is based on dataset 

generated from smart meters that may have 

redundancy, missed values, and uncertainties [17, 

18]. Researchers have investigated several models 

in order to get an accurate forecasting model. Load 

characteristics and capacities of micro-grids define 

the accuracy of the forecasting models. [19]. there 

are three categories for load forecast based on time 

that would be predicted : short-term when the 

prediction is from hours to week ahead, medium-

term with a prediction of months ahead and long-

term where the prediction is for years [20]. 

Lately, many works have been done on short term 

load forecasting for its advantages in the energy 

consumption, peak load anticipation and customer 

management [21]. Several models have been used 

for the short term load forecast: starting with 

traditional model analysis until the machine 

learning models. [22–26] [17].  

Traditional models such as linear regression, 

multiple-linear regression, have been used to energy 

forecasting [27] [28]. In addition to these models, 

autoregressive integrated moving average 

(ARIMA) ,autoregressive (AR),   moving average 

(MA) and autoregressive moving-average were 

used also for the energy consumption prediction[5-

6-29].In [30] and [31] another model is used for 

short term forecasting which is the exponential 

smoothing method. These traditional methods are 

frequently used in energy load prediction since the 

temporal domain is directly modeled. Like all the 

methods, the statistical methods have some 

drawbacks that may prevent them to be the accurate 

model for forecasting and we can list some of the 

drawbacks as the dropping 

accuracy,dimentionality,the linearity of data and 

hard response to unprecedented changes when 

extending the building [12]. 

An alternative solution to the statistical methods is 

the machine learning methods.In these methods, a 

non linear correlation between electric load and 

related factors can be extracted which lead to reach 

a higher accuracy comparing to the other methods 

[32] Among the machine learning methods that are 

used in load forecasting, there are the artificial 

neural networks (ANNs), support vector regression 

(SVR) and support vector machine [33-39].But the 

ANNs are mostly prefered in energy consumption 

prediction especially multilayer percepetron since 

the non linearity modeling is easier. ANN has 

several applications in load forecasting as 

mentioned in [17]. However,  they have the 

disadvatange of assuming the independency 

between successive energy consumptions that lead 

to delete the predective potential that is present in 

the dependency of sequential data.[bouktifpso]and 

when the network gets complex , it has many layers 

and many parameters,the training becomes difficult 

[40]. 

Recently, the deep learning techniques have been 

used as an alternative way for forecasting. Deep 

Neural Networks DNNs are ANNs with several 

hidden layers. The DNNs solve the sequential 

dependence in the data sequences and 

simultaneously are suitable with nonlinearity and 

periodicity of data. Since they are excellent in 

predictions, the DNNs are widely used in Natural 

Language Processing (NLP) and image 

classifications. The methods that may represent the 

DNNs are: Convolution Neural Network (CNN), 

Deep Belief Network (DBN) and Recurrent Neural 

Network (RNN). The RNNs are mostly used in 
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time series analysis due to their architecture that has 

the feedback connections permitting the persistence 

of the past information, nonlinear and time series 

forecasting abilities. Unlike the ANNs that do not 

take into consideration the effect of past 

information [41], the RNNs do which makes them 

more suitable in processing sequential data like in 

energy consumption prediction. In this study the 

RNN will be applied and its model, the long short-

term memory (LSTM) will be investigated. The 

LSTMs are the most developed DNN models. The 

high performance of LSTM is based on memorizing 

long term dependencies due to its internal memory. 

The LSTM internal memory allows the network to 

be appropriate to deal with sequence dependent 

pattern like in demand and load energy[12,42]. 

Load forecasting is based on the past information 

which makes the fact of choosing the right time 

steps crucial. Many studies have been done to solve 

this issue. In this paper, we propose a hybrid PSO 

LSTM-AE for load energy forecasting. The 

contributions of this paper are: 

 

 Data preprocessing stage to eliminate the 

outlier, missing and redundant values and 

normalizing of data 

 The hybrid model PSO LSTM-AE is 

implemented. The PSO algorithm is used 

to find the optimal time lags and hidden 

units of LSTM-AE layers and then the 

optimal model is used for energy 

consumption prediction 

 The evaluation of the hybrid model using 

the evaluation metrics RMSE and MAE 

and comparing the results with those of 

other models.   

 

III. Background 

III.1. From RNN to LSTM 

The recurrent neural network, developed in 1980s 

[43-45], is composed of three types of layers: the 

input layer, one or more hidden layers and the 

output layer. Its structure, chain-like, of repeating 

modules allows to save the information from the 

precedent processing steps. the neural network 

deals with a sequence of inputs due to the feedback 

loop included in RNNs, i.e. , the feedback of the 

output at t-1 into the network is used to produce the 

output at t, for each step. However, learning long 

time dependencies for more than few time steps is 

difficult for RNNs because of the vanishing and 

exploding gradient issues [46]. Figure 1 

demonstrates the sequential processing in RNN.  

 

 
 

Figure 1. Recurrent Neural Network (RNN) and the 

Sequential processing [47] 

 

The LSTMs were introduced by Hochreiter and 

Schmidhuber[11] developed from the RNNs by 

inserting new modules to solve and deal with the 

difficulties met with the RNNs concerning the long-

range dependencies and reminding information for 

extended time periods. The LSTM technique has 

the chain structure form with the repeating module 

having another construction. It is composed of four 

interacting layers and one communication method 

[47]. Figure 2 illustrates the LSTM neural network 

structure.  

 
 

Figure 2. Long Short-Term Memory (LSTM) neural 

network structure [48] 

 

The LSTM network is composed of cells. These 

cells are the memory blocks. The two states, cell 

and hidden states, are transmitted to the next cell. 

The unchanged data flows forward due to the cell 

state. The sigmoid gates allow the addition or the 

remove of data from the cell state. The memory cell 

and the gates are crucial parts in the LSTM. The 

long-term dependency problem is solved with the 

LSTMs by using gates, layer that compromises 

diverse individual weights, for the memorizing 

process control [48]. The input sequence {x1, x2, 

...,xn} of the RNN are modeled recurrently: 
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Q : x(t) F                                             (8) 

D=  F X                                               (9) 

ℎ𝑡 = ƒ(ℎ𝑡−1, 𝑥𝑡)                                               (𝟏) 

Where ht is the hidden state and Xt is the input at t. 

the gradient vanishing and explosion problems are 

solved by the gates into the recurrence function f. 

the LSTM cells states are calculated as bellow:  

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖]                              (𝟐) 

ƒ
𝑡

= 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓]                            (𝟑) 

𝑜𝑡 = 𝜎(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0]                            (𝟒) 

�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐]                        (5) 

𝐶𝑡 = 𝑓𝑡ʘ𝐶𝑡−1 + 𝑖𝑡ʘ𝐶�̃�                                       (𝟔)  
ℎ𝑡 = 𝑜𝑡ʘ tanh(𝐶𝑡)                                           (𝟕) 

 

Where it, ft and ot are, respectively, the input, forget 

and output gates. The LSTM unit parameters are 

W’s and b’s, the actual cell state is Ct, Ce is the new 

values of the cell state. The sigmoid functions of it, 

ft and ot change the output to range between 0 and 1 

as in equations (2)-(4). The results of these gates 

are dependent on Xt and ht-1. The signal is blocked 

if the gate is 0. ft determines the amount of the 

precedent state ht-1 permitted to pass. The decision 

of which new information from the input to be 

updated and added to the state cell is done by the it 

gate whereas determining which information to be 

the output based on the cell state is performed by 

the Ot. C is the memory cell which operates as a 

state information accumulator. Equation (6) defines 

how the update from Ct-1 into Ctis done. Ce , the 

memory cell new values, and ht, the actual output of 

the LSTM block are calculated in Equations (5) and 

(7). A transfer of the two states cell state and the 

hidden state to the next cell is performed for all t. 

this process will be repeated.  

III.2. LSTM AE 

The autoencoder AE is a feedforward neural 

network that is composed of three layers the input 

layer, the hidden layer, and the output layer. These 

layers are sequentially connected and work in an 

unsupervised learning.as a basic, the input size will 

be the same at the output thus they are used in 

generating data from the training dataset. These 

methods are called self-supervised too. AE is based 

on two stages: encoding stage, where it maps the 

input data into the hidden layer, and decodingstage, 

where it reconstructs the input data from the hidden 

layer.  The encoder and decoder functions are 

explained by equations 8 and 9, respectively [49]: 

 

 

Where X(t) is the input features and F is the feature 

space Q and D are the encoder and the decoder  

function, respectively[9]. The AE has an objective 

function which is the reconstruction error, the 

difference between the input and the output data 

that aims to minimize it. With several AE layers, 

minimizing this error will be considerable [50]. 

The LSTM AE is the change of the feed forward 

neural network of AE architecture to the LSTM 

recurrent neural network. LSTM AE is shown in 

figure 3. The LSTM algorithm is composed of two 

layers that act like encoder and decoder of AE. 

Learning from temporal dependencies from one 

sequence to another is possible with the LSTM cells 

[51]. The input sequence (x1, x2, ...,xn) are in 

encoded into the vector in the encoder layer. 

Afterthat, i twill be reconstructed into (xˆ1, xˆ2, 

...,xˆn) in the decoder layer. The root mean squared 

error that illustrates the error between the input and 

the output, reconstructed, data is the objective 

function. 

 
Figure 3.The architecture of LSTM autoencoder. 

 

IV. Particle swarm optimization Algorithm 

Optimization has gained much attention in various 

fields as computers came to an advanced stage. 

Many optimization techniques have been proposed 

to handle the more difficult problems that cannot be 

dealt with based on analytic or using classical 

techniques. Examples might include 

GeneticAlgorithms [51-52], FireflyAlgorithm [53], 

Differential Search Algorithm [54], Wind Driven 

Optimization [55],Teaching–Learning-Based 

Optimization [56-59], Grey Wolf Optimization 

[60], Biogeography based Optimization [61], Drone 

Squadron Optimization [62],  Galaxy based search 

Algorithm [63], Spiral optimization technique[64] 

and Taguchi method [65]. 
In 1995 Kennedy and Eberhart have proposed the 

Particle Swarm Algorithm PSO [16]. It has been 

developed on the concept of the behavior of swarm 

of fishes or birds that search together for the best 

locations and move close to an optimum fitness 

function.  

The PSO algorithm behaves like the other 

evolutionary computational algorithms. The swarm 

of particles, the population of solutions, explores 

the space for a suitable solution, particle, for a 

specific problem.  Particles are distinguished by 

two properties: speed (velocity) and location 

(position).The PSO algorithm is illustrated in figure 

4. 
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Figure 4. PSO particlespositionchange [42] 

In two dimensional space, each element has a 

position expressed by x and y in the solutions space 

and a velocity that permits its exploration in the 

space. For each solution, the velocity is adjusted at 

eachiteration as in eq10 when the position is 

updated by adding the current position to the 

updated velocity as in eq11[66] 

𝑣𝑘+1
𝑖 = 𝑤. 𝑣𝑘

𝑖 + 𝑐1. 𝑟𝑎𝑛𝑑. (
𝑝𝑏𝑒𝑠𝑡

𝑖 −𝑥𝑘
𝑖

∆𝑡
) +

𝑐2. 𝑟𝑎𝑛𝑑. (
𝑝𝑔𝑏𝑒𝑠𝑡

𝑖 −𝑥𝑘
𝑖

∆𝑡
)                                            (10) 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 . ∆𝑡                                          (11) 

While vik is the previous velocity, 

𝑐1. 𝑟𝑎𝑛𝑑. (
𝑝𝑏𝑒𝑠𝑡

𝑖 −𝑥𝑘
𝑖

∆𝑡
)  is knowledge, the cognitive 

part, and𝑐2. 𝑟𝑎𝑛𝑑. (
𝑝𝑔𝑏𝑒𝑠𝑡

𝑖 −𝑥𝑘
𝑖

∆𝑡
) is the collaboration 

between elements, the social part.  

(𝑝𝑏𝑒𝑠𝑡
𝑖 − 𝑥𝑘

𝑖 )and(𝑝𝑔𝑏𝑒𝑠𝑡
𝑖 − 𝑥𝑘

𝑖 )are called 

acceleration by distance. The first term computes 

the distance between the best position found and the 

current position for the particle i while the second 

term calculates the distance between the best 

position of the particle i found by the swarm and its 

current location. The factors c1 and c2, the 

individual and social learning coefficients, are 

updated to c1+c2=4. The exploration capability of 

the algorithm is controlled by W; the particle inertia 

factor. It ensures the balance between the global 

and local explorations. Its values range from 0.2 to 

0.8 which allows PSO algorithm to enhance its 

performance in the end of iterations and give its 

best convergence   

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
. 𝑖𝑡𝑒𝑟                            (12) 

This process of updating the velocity and the 

position of particles is repeated until it meets the 

stopping criteria.The PSO algorithm steps are 

expressed in the flowchart of figure 5. 

 

V. Results and Discussions 

V.1. Model performance metrics 

The forecast accuracy is evaluated by using some 

metrics like the root mean squared error (RMSE) 

and the mean absolute error (MAE) [68]. 

The RMSE is the square root of the average of the 

squared difference between the actual and the 

predicted values. In case of undesirable large errors, 

the RMSE is preferable. It is computed as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖=1

𝑁
                                  (13) 

Where yi is the desired output,   yi^ is the predicted 

output of the ith observation, and n is the number of 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Particle Swarm Optimization Algorithm  
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While the MAE is the average of the absolute 

difference between the actual and the predicted 

values. The MAE is calculated as follows: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
                                          (14) 

V.2. Methodology 

This section describes our suggested model to 

perform the energy load forecasting. The model is 

composed of some steps: the data preprocessing 

and preparation, searching the optimal 

hyperparameters time steps and the number of the 

hidden units in layers for the LSTM-AE model, 

validating the final optimized model and then 

comparing its performance with other models, deep 

and machine learning models, based on the 

evaluation metrics. Figure 6 portrays the framework 

of our proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Load energy forecasting proposed model. 

 

V.3. Data preparation and preprocessing 

In this step, the preprocessing data is analyzed in 

details. The dataset used in this study is the 

American Electric Power coming from PJM's 

website and are in megawatts (MW). The data 

frequency used in this article is hourly and it was 

measured from 2004–10–01 to 2018–08–03. The 

total number of raw data points is 121271. 

The dataset is treated before the training to 

eliminate the outlier, redundant and null values. 

The dataset is normalized also since the LSTM 

model is sensitive to the scale of the inputs. After 

that, we split the dataset into test and train set. We 

use the test data to evaluate accuracy of our model.  

V.4. Model training 

After the data is preprocessed, it passes to the 

training step. In this step we deal with the LSTM-

AE model. In our study, the model consists of two 

encoder LSTM layers, a single repeated vector 

layer, two decoder LSTM layers and one dense 

layer. The LSTM-AE has several parameters to be 

set carefully in order to have an accurate model. 

Among the hyperparameters that must be there are 

the epoch number, batch size, time steps and 

number of neurons in LSTM layers.  

There are also a various activation and optimization 

functions that must be selected to give better 

results. Setting these parameters manually is time 

consuming especially for the time steps where this 

parameter is important in prediction. For this 

reason, we use the Particle Swarm Optimization 

algorithm to find the optimal time steps and the 

hidden units, neurons, in layers numbers. As it is 

known, the metaheuristic algorithms do not give 

global optimum results but they are effective in 

finding the near optimal solutions. From this, we 

get several LSTM-AE configurations based on 

PSO. Based on the RMSE values, fitness function 

for PSO, of each configuration, the best model 

configuration is selected. Lately the performance of 

the selected optimized model is compared to other 

machine and deep learning models in terms of 

RMSE and MAE. The models that will be used in 

the comparison in our study are: Artificial Neural 

Networks (ANN) Convolution Neural Network 

(CNN), SVR, ARIMA, and Random Forest 

Regression.  

 

V.4. Results and Discussions 

a- Parameters setting 

In this section, we set the parameters of the LSTM-

AE model. Using the PSO algorithm, the best 

configuration model with optimal time steps and 

number of neurons in the two LSTM layer sis 

selected. The other parameters are set by testing the 

performance of the model for each one: 

 The train and test size was tested for 

50/50, 60/40, 70/30 and 80/20  

 The number of epochs was varied from 50 

to 400 while the batch size was varied 

from 8 to 256.  

 The activation function selected for the 

model was the rectified linear unit (Relu) 

where the « ADAM » optimizer was 

selected for the optimization function. 

 The optimal time steps and hidden neurons 

in LSTM layers are set using the PSO 

algorithm. 

The best results that have been got were found with 

the model configuration with train and test split of 

Data 

PreprocessingandPre
paration 

 

Dataset 

Setting LSTM-

AE Parameters 

Based on PSO,checking 

for the Optimal time steps 

and hiddenunits 

Select the best model 
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the Fitness 

Function(RMSE) 

Models Performance 
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70/30, 250 of epochs and 80 batch size. The 

optimal parameters found based on PSO are 25 for 

time steps and 60, 56 for the hidden units of the two 

encoder LSTM layers. 

 

The experimental results 

The actual data and the predicted data of our 

proposed model are plotted in the Figure 7. 

 

Figure 7. Results of the forecasted energy compared to the raw measured data 

 

Figure 7 shows the predicted values fit the actual 

values in shape with a little difference but the 

performance of our model is good. In order to 

evaluate the performance of our proposed model, 

we compared it with the performance of other 

models in terms of RMSE and MAE. Table1 shows 

the RMSE and MAE results for each model. 

 

Table 1.Comparison of the proposed model to the 

state of art techniques 

model RMSE MAE 

LSTM 720.67 593.07 

CNN 790.45 574.63 

Random Forest 915.6 794.5 

ANN 743.8 531.21 

Proposed model 680.89 486.28 

 

From the results of table1, we can compare our 

proposed model with LSTM first. The table1 results 

show that the latter model outperforms the LSTM 

model in terms of RMSE and MAE. The PSO-

LSTM-AE has RMSE and MAE of 680.89 and 

486.28 respectively where LSTM has RMSE of 

720.67and MAE of 593.07. These results show the 

effect of combining the LSTM with the 

autoencoder that gives a better performance than 

the usual LSTM. To evaluate the performance of 

our proposed model, table1 illustrates the 

performance of the other baseline models on the 

same dataset. The models are: CNN, Random 

Forest and ANN. CNN model has 790.45 as RMSE 

and 574.63 as MAE. Random forest scored the 

highest rate of errors with 915.6 RMSE and 794.5 

MAE while ANN has 743.8 RMSE and 531.21 

MAE. Comparing these results to those of the 

 

proposed model, it is obvious   our proposed model 

scored better results in terms the specific metrics 

recording the smallest errors: 680.89 as RMSE and 

486.28 as MAE. 

IV. Conclusion 

 

In this paper, we introduced an optimized model for 

load energy forecasting based on smart metering 

dataset. Firstly, we preprocessed the data to 

eliminate the null, outliers and redundant values. 

Moreover, we implemented our hybrid PSO with 

LSTM-AE method. The PSO algorithm was used to 

optimize the time steps number and the neurons in 

the LSTM layers. In addition, the hyperparameters 

of the model were set after multiple values testing 

in order to get better performance results. The 

experimental results of this hybrid model were 

compared to other results of other existing models 

to evaluate its performance. Finally, our hybrid 

model showed better results comparing to other 

models in terms of the evaluation metrics RMSE 

and MAE.  
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