Numerical modeling of cross-flow ultrafiltration of Bentonite in tubular membrane

F. Lazghad, A. Beicha

Abstract


Abstract: A tubular ultrafiltration model which couples concentration polarization and membrane fouling was developed. The model is based on the general convective-diffusion equationin addition to the usual membrane hydraulic resistance. Fouling due to polarization concentration phenomenon during the ultrafiltration of a solid particle of the Bentonite was investigated. The governing equations were solved by using the finite element method to simulate both the wall concentration and the permeate flux. The simulations were performed at different transmembrane pressures (0.8, 1.5 and 2.5 bar), feed concentration of 1 mol/m3 and axial velocity at the inlet section of 0.59 m/s. The results obtained by simulation show that the concentration of Bentonite solid particles on the membrane surface increases rapidly with increasing time, and after a whilethis concentration becomes constant. Also, it decreases with increase in transmembrane pressure (TMP). On the other hand, the permeate flux decreases with increasing time to the stationary state and the increase of TMP causes an increase in the permeate flux.

Full Text:

PDF

References


Zaghbani, N.; Hafiane, A.; Dhahbi, M. Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Separation and Purification Technology 55 (2007) 117-124.

Rodgers, V.G. J. Membrane Processes, by R. Rautenbach and R. Albrecht, JohnWiley& Sons, UK (1989, reprinted 1994), 459 pages, ISBN 0-47-191-1100. Devlopments in Chemichal Enginering and Mineral Processing 3 (1995) 236-237.

Lipnizki, F.; Ruby-Figueroa, R. Membrane operations in the brewing and sugar production. In Integrated Membrane Operations in the Food Production; Cassano, A., Drioli, E., Eds.; (2013) 163-195.

Klimkiewicz, A.; Cervera-Padrell, A. E.; van den Berg, F. W. J. Multilevel Modeling for Data Mining of Downstream Bio-Industrial Processes. Chemometrics and Intelligent Laboratory Systems 154 (2016) 62-71.

Roa, R.; Zholkovskiy, E. K.; Nägele, G. Ultrafiltration modeling of non-ionic microgels. Soft Matter 11 (2015) 4106-4122.

Díaz, V. H. G.; Prado-Rubio, O. A.; Willis, M. J.; von Stosch, M. Dynamic hybrid model for ultrafiltration membrane processes. Computer Aided Chemical Engineering 40 (2017) 193-198.

Salahi, A.; Mohammadi, T.; Behbahani, R.M.; Hemati, M. PES and PES/PAN blend ultrafiltration hollow fiber membranes for oily wastewater treatment: preparation, experimental investigation, fouling, and modeling. Advancesin Polymer Technology 34 (2015).

Kurada, K. V.; De, S. Modeling of cross flow hollow fiber ultrafiltration for treatment of effluent from Railway Workshop. Journal of Membrane Science 551 (2018) 223-233.

Conidi, C.; Cassano, A. Recovery of phenolic compounds from bergamot juice by nanofiltration membranes. Desalination and Water Treatment 56 (2015) 3510-3518.

Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. Journalof Food Engineering 195 (2017) 1-13.

Cassano, A.; Conidi, C.; Tasselli, F. Clarification of pomegranate juice (Punica Granatum L.) by hollow fibre membranes: analyses of membrane fouling and performance. Journal of chemical Technology and Biotechnology 90 (2015) 859-866.

Bhattacharjee, C.; Datta. S. A numerical simulation for the prediction of flux and rejection during ultrafiltration in unstirred batch cell using variable diffusivity concept. Separation and Purification Technology 24 (2001) 13-22.

Chakrabarty, B.; Ghoshal, A. K.; Purkait, M. K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science 325 (2008) 427-437.

Judd, S.; Jefferson, B. Membranes for Industrial Wastewater Recovery and Re-use, Elsevier, Advanced Technology, The Boulevard, Langford Lane, Kidlington Oxford OX51GB,UK, 2003.

Jönsson, A. -S.; Jönsson, B.; Byhlin, H. A concentration polarization model for the ultrafiltration of nonionic surfactants. Journal of Colloid and Interface Science 304 (2006) 191-199.

Beicha, A.; Zaamouche, R.; Sulaiman, N. M. Dynamic ultrafiltration model based on concentration polarization–cake layer interplay. Desalination 242 (2009) 138-148.

Bruin, S.; Kikkert, A.; Weldring, J. A. G.; Hiddink, J. Overview of concentration polarization in ultrafiltration. Desalination 35 (1980) 223-242.

Wijmans, J. G.; Nakao, S.; Smolders, C. A. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model. Journal of Membrane Science 20 (1984) 115-124.

Denisov, G. A. Theory of concentration polarization in cross-flow ultrafiltration: gel-layer model and osmotic-pressure model. Journal of Membrane Science 91 (1994) 173-187.

Mallubhotla, H.; Belfort, G. Semi empirical modeling of cross-flow microfiltration with periodic reverse filtration. Industrial and Engineering Chemistry Research 35 (1996) 2920-2928.

Hermia, J. Constant pressure blocking filtration laws: application to power-law non-newtonian fluids. Institution of Chemical Engineering Transactions 60 (1982) 183.

Davis, R. H. Modeling of fouling of crossflow microfiltration membranes. Separation and Purification Methods 21 (1992) 75-126.

Bhattacharjee, S.; Bhattacharya, P. K. Flux decline behaviour with low molecular weight solutes during ultrafiltration in an unstirred batch cell. Journal of Membrane Science 72 (1992) 149-161.

Ho, C. C.; Zydney, A. L. A combined pore blockage and cake filtration model for protein fouling during microfiltration. Journal of Colloid Interface Science 23 (2000) 389-399.

Furukawa, T.; Kokubo, K.; Nakamura, K.; Matsumoto, K. Modeling of the permeate flux decline during MF and UF cross-flow filtration of soy sauce lees. Journal of Membrane Science 322 (2008) 491-502.

Vela, M. C. V. ; Blanco S. Á. ; García, J. L.; Rodríguez, E. B. Application of a dynamic model for predicting flux decline in crossflow ultrafiltration. Desalination 198 (2006) 303-309.

Ikonić, B. B.; Zavargo, Z. Z.; Jokić, A. I.; Šereš, Z. I.; Vatai, G. N.; Peruničić, M. B. Microfiltration of wheat starch suspensions using multichannel ceramic membrane. Hemijska Industrija 65 (2011) 131-138.

Ren, L.; Yu, S.; Li, J.; Li, L. Pilot study on the effects of operating parameters on membrane fouling during ultrafiltration of alkali/surfactant/polymer flooding wastewater: Optimization and modeling. Royal Society of Chemistry Advances 9 (2019) 11111-11122.

Damak, K.; Ayadi, A.; Zeghmati, B.; Schmitz, Ph. Concentration polarization in tubular membranes a numerical approach. Desalination 171 (2005) 139-153.

Purkait, M. K.; Bhattacharya, P. K.; De, S. Membrane filtration of leather plant effluent: Flux decline mechanism. Journal of Membrane Science 258 (2005) 85-96.

Cheryan, M. Ultrafiltration and Microfiltration Handbook; CRC Press: Boca Raton, ISBN 9780429179112 (1998) 552.

Wetterau, G. E.; Clark, M. M.; Anselme, C. A dynamic model for predicting fouling effects during the ultrafiltration of a ground water. Journal of Membrane Science 109 (1996) 185-204.

Crozes, G. F.; Jacangelo, J. G.; Anselme, C.; Laine, J. M. Impact of ultrafiltration operating conditions on membrane irreversible fouling. Journal of Membrane Science 124 (1997) 63-76.

Pak, A.; Mohammadi, T.; Hosseinalipour, S.M.; Allahdini, V. CFD modeling of porous membranes. Desalination 222 (2008) 482-488.

Damak, K.; Ayadi, A.; Zeghmati, B.; Schmitz, P. A new model of combined Navier-Stokes and Darcy’s law for fluid flow in crossflow filtration tubular membrane. Desalination 161 (2004) 67-77.

Bacchin, P.; Aimar, P.; Sanchez, V. Model for colloidal fouling of membranes. AIChE Journal 41 (1995) 368-376.

Nakao, S-I.; Nomura, T.; Kimura, S. Characteristics of macromolecular gel layer formed on ultrafiltration tubular membrane. AIChE Journal 25 (1979) 615-622.

Bird, R. B; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena, 2nd edn. John Wiley & Sons, Inc, New York (2002) pp.126, 154.

Hansen, M.; Barker, V. A.; Hassager, O. Spectral element simulation of ultrafiltration. Chemical Engineering Science 53 (1998) 3099-3115.

Anderson, D. A.; Tannehill, J. C.; Pletcher, R. H. Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, New York (1984) pp. 599.

De, S.; Bhattacharjee, S.; Sharma, A.; Bhattacharya, P. K. Generalized integral and similarity solutions of the concentration profiles for osmotic pressure controlled ultrafiltration. Journal of Membrane Science 130 (1997) 99-121.

Damaka, K.; Ayadi, A.; Schmitz, Ph.; Zeghmati, B. Modeling of crossflow membrane separation processes under laminar flow conditions in a tubular membrane. Desalination 168 (2004) 231-239.

Cheryan, M. Ultrafiltration Handbook, Technomic Publishing Co. Inc.; USA, 1986.

Clifton, M. J.; Abidine, N.; Aptel, P.; Sanchez, V. Growth of the polarization layer in ultrafiltration with hollow-fibre membranes. Journal of Membrane Science 21 (1984) 233- 245.

Van den Berg, G. B.; Smolders, C. A. Flux decline in ultrafiltration processes. Desalination 77 (1990) 101-133.

Hoek, E. M. V.; Kim, A. S.; Elimelech, M. Influence of Crossflow Membrane Filter Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration Separations. Environmental Engineering Science 19 (2004) 357-372.

Huang, L.; Morrissey, M. T. Finite element analyses as a tool for crossflow membrane filter simulation. Journal of Membrane Science 155 (1999) 19-30.

Vladisavljević, G. T.; Vukosavljević, P.; Bukvić, B. Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering 60 (2003) 241-247.

Lee, Y.; Clark, M. M. Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. Journal of Membrane Science 149 (1998) 181-202.

Chiu, T. Y.; James, A. E. Critical flux determination of non-circular multi-channel ceramic membranes using TiO2 suspensions. Journal of Membrane Science 254 (2005) 295-301.

Zhen, X. -H.; Yu, S. -L.; Wang, B. -F.; Zheng, H. -F. Flux enhancement during ultrafiltration of produced water using turbulence promoter. Journal of Environmental Science 18 (2006) 1077-1081.

Vela, M. C. V; Blanco, S. Á; García, J. L; Gozálvez-Zafrilla, J. M.; Rodríguez, E. B. Utilization of a shear induced diffusion model to predict permeate flux in the crossflow ultrafiltration of macromolecules. Desalination 206 (2007) 61-68.

Mohammadi, T.; Kohpeyma, A.; Sadrzadeh, M. Mathematical modeling of flux decline in ultrafiltration. Desalination 184 (2005) 367-375.

Quezada, C.; Estay, H.; Cassano, A.; Troncoso, E.; Ruby-Figueroa, R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes 11 (2021) 368.

Chen, V.; Fane, Madaenir, A. G. S., Wenten, I. G. Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. Journal of Membrane Science 125 (1997) 109-122.

Park, G. W.; Nagele, G. Modeling cross-flow ultrafiltration of permeable particle dispersions. Journal of Chemical Physics 153 (2020) 204110.


Refbacks

  • There are currently no refbacks.