Etude de l’applicabilité de l’oxydation électrochimique directe pour la dégradation de l’oxytétracyline

S. Belkacem, S. Bouafia, N. Oturan, M. Chabani

Abstract


Abstract: The present study aims to investigate the oxytracycline degradation by means of electrochemical oxidation using boron doped diamond electrode (BDD). The electrochemical behavior of this later, examined by cyclic voltametry, showed a wave at 1.25 V/SCE which confirm the OTC oxidation. Thereby, the effect of electrolyte concentration (20, 40 and 60 mM) and current intensity (50, 150 and 300 mA), on OTC removal efficiency, was studied. The obtained results showed that OTC degradation followed a pseudo first order model and increased with the raise of current and electrolyte dose. At the optimal conditions (60 mM of Na2SO4 and 150 mA), the OTC degradation and mineralization reached 75% and 50% respectively, with a corresponding specific energy consumption of 0.46 kWh/kg.

Resumé : Au cours de ce travail on s’est intéressé à l’élimination de l’oxytéracycline (OTC), en solution aqueuse par oxydation électrochimique sur une anode en diamant dopé au bore (BDD pour «boron doped diamond»). L’étude électrochimique par voltamérie cyclique a confirmé l’électroactivité de la molécule sur l’anode avec un pic d’oxydation aux alentours de 1,25 V/ECS.  On s’est également intéressé à l’étude de l’effet de la concentration en électrolyte support (20, 40 et 60 mM) ainsi qu’à l’intensité de courant appliqué (50, 150 et 300 mA) sur l’efficacité du traitement. Les résultats ont montré que les cinétiques de dégradation étaient du pseudo premier ordre et que la vitesse de la réaction était proportionnelle à la concentration de l’électrolyte et à l’intensité du courant.  Les conditions optimales de traitement ont permis d’atteindre des taux de dégradation et de minéralisation de 75% et de 50% respectivement, pour une consommation énergétique de 0,46 kWh/Kg.


Full Text:

PDF

References


Larsson, D.G.J., De Pedro, C., Paxeus, N., Effluent from drug manufactures contains extremely high levels of pharmaceuticals, Journal of Hazardous Materials (2007), 148,751-755.

Kemper N., Veterinary antibiotics in the aquatic and terrestrial environment, Ecological indicator (2008), 18-13.

Arabpour N., Ejhieh, A.N., Photodegradation of cotrimaxazole byclinoptilolite-supported nickel oxide, Process Safety and Environmental Protection (2016), 102, 431-440.

Das, L., Maity U., Basu, J.K., The photocatalytic degradation of carbamazepine and prediction by artificial neural networks, Process Safety and Environmental Protection (2014), 92, 888-895.

Brillas, E., Arias, C., Cabot P.L., Centellas, F., Carrido, J.A., Rodriguez, R.M., Degradation of organic contaminants by advanced electrochemical methods, Portigaliae Electrochimica Acta (2006), 24, 159-189.

Ozcan, A.O., Sahin, Y., Koparal, A.S., Oturan, M.A., Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: Influence of experimental parameters on degradation kinetics and mineralization efficiency, Water Research (2008), 42, 2889-2898.

Barrera-Diaz, C., Canizares, P., Fernandez, F.G., Natividad, R., Rodrigo, M.A., Electrochemical Advanced Oxidation Processes : An Overview of the Current Applications to Actual Industrial Effluents, Journal of the Mexican Chemical Society (2014), 58(3), 256-275.

Pailler, J.,Y., Krein, A., Pfister, L., Hoffmann, L., Guignard, C., Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg, Science of The Total Environment (2009), 407, 4736-4743.

Palma-Goyes, R.E., Guzman-Duque, F.L., Penuela, G., Gonzalez, I., Nava, J.L., Torres-Palma, R.A., Electrochemical degradation of crystal violet with BDD electrodes: Effect of electrochemical parameters and identification of organic by-products, Chemosphere (2010), 81, 26-32.

Chachou, L., Gueraini, Y., Bouhalouane, Y., Poncin, S., LiK, H.Z. Bensadok, K., Application of the electro-Fenton process for cutting fluid mineralization, Environmental Technology (2015), 36, 1924-1932.

Dai, Q., Zhou, J., Weng, M., Luo, X., Feng, D., Chen, J., Electrochemical oxidation metronidazole with Co modified PbO2 electrode: Degradation and mechanism, Separation and Purification Technology (2016), 166, 109-116.

Zazou, H., Oturan, N., Sonmez-Celebi, M., Hamdani, M., Oturan, M.A., Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode, Journal of Electroanalytical Chemistry (2016), 774, 22-30.

Dai, Q., Xia, Y., Sun, C., Weng, M., Chen, J., Wang, J., Chen, J., Electrochemical degradation of levodopa with modified PbO2 electrode: parameter optimization and degradation mechanism, Chemical Engineering Journal (2014), 245, 359-365.

Bensadok, K., El-Hanafi, N., Lapique, F., Electrochemical treatment of dairy effluent using combined Al and Ti/Pt electrodes system, Desalination (2011), 280, 244-251.

Guinea, E., Arias, C., Cabot, P.L., Garrido, J.A., Rodriguez, R.M., Centellas, F., Brillas, E., Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide, Water Research (2008), 42, 499-511.

Wu J., Zhang H., Oturan N., Wang Y., Chen L., Oturan M.A., Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2 –IrO2) anode, (2012), Chemosphere, 87, 614-620.


Refbacks

  • There are currently no refbacks.