Comparaison de l’expression homologue du gène vip3Aa16 chez Bacillus thuringiensis sous le contrôle de différents promoteurs

S. Sellami, M. Cherif, L. Abdelkefi-Mesrati, S. Tounsi, K. Jamoussi


Abstract: Bacillus thuringiensis produces the vip3 genes during the vegetative growth phase which are active against lepidopteran larvae. During this study, the vip3Aa16 was cloned under the control of different promotors in order to compare its expression and try to improve it. In fact, vip3Aa16 was cloned under the control of 3 promotors in the same time (the spo promotors and the vegetative promotor Prv) (pHT-spo-Prv-vip3Aa16).  The vip3Aa16 was also cloned under the control of only the vegetative promotor Prv (pHT-Prv-vip3Aa16).Western blot analyses showed that Vip3Aa16 protein was detected during the vegetative phase but not during the sporulation phase, proving the expression of vip3Aa16 from the Prv and not from the spo promotors. Bioassays against Ephestia kuehniella revealed that the supernatant of BUPM106 (pHT-Prv-vip3Aa16) and BUPM106 (pHT-spo-Prv-vip3Aa16) strains were toxic and caused 30 % of mortality after 5 days.

Résumé: Bacillus thuringiensis synthétise au cours de la phase végétative, les protéines de types Vip3 actifs sur les lépidoptères. Au cours de ce travail, nous avons cloné le gène vip3Aa16 sous le contrôle de différents promoteurs au vue de comparer l’expression et de chercher à l’améliorer. En effet, vip3Aa16 a été cloné sous le contrôle de trois promoteurs à la fois (les deux promoteurs sporulation-dépendants spo  et le promoteur végétatif Prv) (pHT-spo-Prv-vip3Aa16). Nous avons également cloné vip3Aa16 uniquement sous le contrôle de son promoteur végétatif Prv (pHT-Prv-vip3Aa16). L’analyse par Western blot a montré la détection de Vip3Aa16 pendant la phase végétative mais non pas durant la phase de sporulation, témoignant l’expression de vip3Aa16 à partir de Prv et la faible ou l’absence d’expression à partir des promoteurs spo. Les tests de toxicité contre les larves d’Ephestia kuehniella a révélé que le surnageant des cultures des souches BUPM106 (pHT-Prv-vip3Aa16) et BUPM106 (pHT-spo-Prv-vip3Aa16) étaient toxiques et ont causé une mortalité de l’ordre de 30 % au bout de 5 jours.

Full Text:



Popp, J., Petö, K., Nagy, J. 2013. Pesticide productivity and food security. A review. Agron. Sustainable Dev. 33: 243-255.

Rice, P.J., Arthur, E.L., Barefoot, A.C. 2007. Advances in Pesticide Environmental Fate and Exposure Assessments. J. Agr. Food Chem. 55: 5367-5376.

Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dan, D.H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Mol. Biol. Rev. 62: 775-806.

Sellami, S., Zghal, T., Cherif, M., Zalila-Kolsi, I., Jaoua, S., Jamoussi, K. 2013. Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities. J. Basic Microbiol. 52: 1-10.

Estruch, J.J., Yu, C.G., Warren, G.W., Desai, N.M., Koziel, M.G., Nye, G.J. 1999. Class of proteins for the control of plant pests. Patent US-5877012.

Sellami, S., Jamoussi, K., Dabbeche, E., Jaoua, S. 2011. , Increase of the Bacillus thuringiensis secreted toxicity against lepidopteron larvae by homologous expression of the vip3LB gene during sporulation stage. Curr. Microbiol. 63 : 289-294.

Sellami, S., Cherif, M., Abdelkefi-Mesrati, L., Tounsi, S., Jamoussi, K. 2015. Toxicity, activation process, and histopathological effect of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 on Tuta absoluta. Appl. Biochem. Biotechnol. 175: 1992- 1999.

Abdelkefi-Mesrati, L., Boukedi, H., Dammak-Karray, M., Sellami-Boudawara, T., Jaoua, S., Tounsi, S. 2011. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J. Invertebr. Pathol. 106: 250-254.

[9] Ghribi, D., Zouari, N., Jaoua, S. 2004. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by UV and nitrous acid affecting metabolic pathway and/or delta-endotoxin synthesis.

Agaisse, H., Lereclus, D. 1994 a. Structural and functional analysis of the promoter region involved in full expression of the cry1IA toxin gene of Bacillus thuringiensis. Mol. Microbiol. 13: 97-107.

Agaisse, H., Lereclus, D. 1994 b. Expression in Bacillus subtilis of the Bacillus thuringiensis cry1IA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J. Bacteriol. 176: 4734-4741.

Zhu, C., Ruan, L., Peng, D., Yu, Z. and Sun, M. 2006. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subs kurstaki against Spodoptera exigua. Lett. Appl. Mic¨robiol. 42: 109-114.

Mesrati, A.L., Tounsi, S., Jaoua, S. 2005. Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol. Lett. 244: 353-358.

Sambrook, J., Fritsch, E.F., Maniatis, T. Molecular cloning. In A laboratory manual, 2nd edn; ColdSpring: Harbor Laboratory, Cold Spring Harbor, NY, 1989.

Tounsi, S., Zouari, N., Jaoua, S. 2003. Cloning and study of the expression of a novel cry1Ia-type gene from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 95: 23-28.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.

Arora, N., Selvapandiyan, A., Agrawal, N., Bhatnagar, R.K. 2003. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 310: 158–162.

Song, R., Peng, D., Yu, Z., Sun, M. 2008. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Appl. Microbiol. Biotechnol. 80: 647–654.

Wong, H.C., Schnepf, H.E., Whiteley, H.R. 1983. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J. Biol. Chem. 258: 1960-1967.


  • There are currently no refbacks.