Surfactants Elimination by biological pathway

M. Belkhir, K. Louhab, S. Bougherara, H. Remmini

Abstract


Abstract: Surfactants are major components of detergents and cosmetics; they are among the most undesirable pollutants in the environment because of their toxic effects on aquatic organisms.

The main objective of this work is to define the elimination limits of the three different types of surfactants (anionic, cationic and amphoteric) by activated sludge.

The results obtained were modeled by the model ASM1 (Activated Sludge Model N°1) in order to establish a better representation of the kinetic parameters such as the rate of disappearance of surfactant rs and the growth rate of the biomass rc. According to the classification based on biodegradation surfactants, the results obtained suggest that the AES is more degraded than the other surfactants with rs AES = 17.01 mg / lh at (cAES = 40 mg / l, T = 35 ° C) and rcAES = 1.42. mg / lh under the same conditions.

Full Text:

PDF

References


Arslan-Alaton, I.; Erdinc, E. Effect of photochemical treatment on the biocompatibility of a commercial nonionic surfactant used in the textile industry. Water research 40(2006):3409 –3418.

Gomez, V.; Ferreres, L.; Pocurull, E, Borrull, F. Determination of nonionic and anionic surfactants in Environmental Water Matrices. Talanta 84(2011)859–866

Huang, X.; Wu, T.; Li, Y.;Sun, D.; Zhang, G.; Wang, Y.; Wang, G.; Zhang, M. Removal of petroleum sulfonate from aqueous solutions using freshly generated magnesium hydroxide. Journal of hazardous materials 219(2012)82–88.

Olmez-Hanci, T.; Arslan-Alaton, I.; Basar, G. Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology. Journal Of Hazardous Materials 185(2011)193–203.

Ivanković, T.; Hrenović, J. Surfactants in the environment. Arhiv Za Higijenu Rada I Toksikologiju 61(2010)95–109.

Ying, G.Fate behavior and effects of surfactants and their degradation products in the environment. Environ. Int.32 (2006)417–431.

Shao, B.; Hu, J.; Yang, M.; An, W.; Tao, S. Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Archives Of Environmental Contamination And Toxicology 48(2005)467–473.

les tensioactifs dans les eaux douces et marines .Guy Thoumelin (1995).

Yu, Y.; Zhao, J.; Bayly, A. Development of surfactants and buildersinde-tergent formulations Chin.J. Chem. Eng. 16(2008) 517–527.

Concetta, M.M, Caterina, F.; Vincenzo, A. L.; Marilena Sanfilippob.; Francesca, T.; Andrea, S. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): Regulatory volumedecrease (Rvd) and modulation of biochemical markers related tooxidative stress Concetta. Aquatic Toxicology 157 (2014) 94–100.

Effendy, I.; Maibach, HI. Clin Dermatol (1996)14-15.

Elsgaard, L.; Pojana, G.; Miraval, T.; Eriksen, J.; Marcomini A Chemosphere 50.(2003)929-937.

Li, H-G.; Jiku, F.; Schroder, HF. assessment of the pollutant elimination efficiency by gas chromatography/ masse spectrometry, liquid chromatography-masse spectrometry and tandem mass spectrometry comparison of conventional and membrane –assisted biological wastewater treatment process. Journal of chromatography A,889 (2000)155-176.

Carboneras, B.; Villaseñor, J.; Jesus Fernandez-Morales, F. Modelling aerobic biodegradation of atrazine and 2,4 – dichlorophenoxy acetic acid by mixed-cultures, Bioresource Technology (2017).

Carstensen, J.; Vanrolleghem, R.; Reichert, W. Terminology and methodology inmodelling for water quality management - a discussion starter. Water Science and Technology, 36(5) (1997) 157-168.

Daigger, G.T.; Grady, C.L.J. The use of models in biological process design. Proceedings of the water environment federation. Vol. 1(1995) 501-510.

Jean-Marc, C. Analyse et optimisation du traitement de l'azote par boues activees a basse temperature. Autre. Universite Louis Pasteur - Strasbourg I, (2002). Francais. Page 36-37.

Imamoglu, E.; Sukan, F.V. Scale-up and kinetic modeling for bioethanol production.Bioresource Technology, 144(2013) 311-320.

Lendenman, U.; Snozzi, M.;Thomas, E. Growth kinetics of Escherichia coli withglalactose and several other sugrs in carbon-limited chemostat culture. an. J. Microbiol. 46 (2000)72-80.

Esteve, K. thèse de doctorat , Procédé de traitement biologique aérobie d’effluents phytosanitaires en viticulture , N° d’ordre : 3550, ECOLE DOCTORALE SCIENCE DE LA VIE, 14 décembre 2007.

Potokar, M.S. Acute, Subacute, and Chronic Toxicity Data on Anionics. In: Surfactant Science Series Vol. 43(1992) - Anionic Surfactants :Biochemistry, Toxicology,Dermatology (2nd edition), pp.81-116. C. Gloxhuber; K. Künstler, Eds. Marcel Dekker,Inc.New York, NY.

Calner, J.P. ; Perret, J.M. ; Racault, Y. Traitement biologique aerobie par bassins enserie des effluents vinicoles. 2eme congres international sur le traitement des effluents vinicoles (1998)178-188.

Matthew, J.; Scott, M.J; Jones, M.N. The biodegradation of surfactants in the environment, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK, Biochimica et Biophysica Acta 1508 (2000) 235-251.

Forbes, V.E .; Forbes, T.L. Ecotoxicologie , thiorie et applications , 1994, la traduction de Ecotoxicology in theory and practice est publiée en accord avec Chapman & Hall. Londres , Royaume Uni.

Makinia, J.; Rosenwinkel, K.H.; Spering, V. Comparison of two model concepts for simulation of nitrogen removal at a full-scale biological nutrient removal pilot plant. Journal of Environmental Engineering, 132(2006) (4) 476-487.

Tawfik, S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part (2015).

J. Ind. Eng. Chem. 28, 171e183. http:// dx.doi.org/10.1016/j.jiec.2015.02.011.

Xue, Y.; Xiao, H. ; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 16(2015), 3626e3655. http://dx.doi.org/10.3390/ijms16023626.

Mori, I.C.; Arias-Barreiro, C.R.; Koutsaftis, A.; Ogo, A.; Kawano, T.; Yoshizuka, K.; Inayat-Hussain S.H.; Aoyama, I. Toxicity of tetramethylammonium hydroxideto aquatic organisms and its synergistic action with potassium iodide.Chemosphere120(2015),299e304.http://dx.doi.org/10.1016/j.chemosphere.2014.07.011 .

Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles e a review. Text.

Res. J. 80(2010), 1721e1737. http://dx.doi.org/10.1177/ 0040517510363193.

Bock, KJ. ; Stache, H. Surfactants. In: Hutzinger O (Ed) The Handbook of Environmental Chemistry, Vol 3B (1982) 163-199. Springer, Berlin.

Games, L.M.; King, J.E.; Larson, R.J. Fate and distribution of a quaternary ammonium surfactant, octadecyltrimethylarnmonium chloride (OTAC) in Wastewater Treatment. Environ. Sci. Technol. 16(1982)483-488.

Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles e a review. Text. Res. J. 80(2010), 1721e1737. http://dx.doi.org/10.1177/ 0040517510363193.

Mulligan, CN. Environmental applications for biosurfactants. Environ Pollut 2005; 133:183–98.

Scho berl, P.; Bock, K.J.; Huber, L. Okologisch relevante Daten von Tensiden in Wasch- und Reinigungs-mitteln, Tenside Surfactant Deterg. 25 (1988) 86-98.

Zhou, A.; Liu, W.;Varrone, C.; Wang, Y.;Wang, A.; Yue, X. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis. Bioresour. Technol. 192(2015) 835–840.

García, M.T. ; Campos, E. ; Sánchez-Leal, J. ;Comelles, F. Structure-activity relationships for sorption of alkyl trimethyl ammonium compounds on activated sludge. Tenside Surfactant Deterg. 41(2004)235–239.

Garcia, M. ; Teresa Campos, E. ; Sánchez-Leal, J. ; Comelles, F. Sorption of alkyl benzyldimethyl ammonium compounds by activated sludge. J. Dispers. Sci. Technol. 27(2006b) 739–744.

Guan, R.; Yuana, X .; Wu, Z .; Wanga, H.; Jiang , L.; Li, Y.; Zeng, G. Functionality of surfactants in waste-activated sludge treatment, Science of the Total Environment 609 (2017) 1433–1442.

Market Wired, [Online], Surfactants Market to Be Worth $ 46. 20 Billion by 2022(2017): 938 Grand View Research, Inc. Accessed 13/12/2017, Available at: 939 http://www.marketwired.com/press-release/surfactants-market-to-be-worth-4620-billion- y- 940 2022-grand-view-research-inc- 2074859.htm.

EPA, [Online] Safer choice criteria for surfactants (2016), 756 available at 757 https://www.epa.gov/saferchoice/safer-choice-criteria-surfactants, date accessed 13/08/2018.

Web of Science, (2017), [Online], Accessed on 13/12/17. Available at https://apps.webofknowledge.com.

Zhang, J.H.; Zen, J.H. Adsorption of toluene and naphthalene on Beijing soils and its influence factor. J. Environ. Sci.-China. 27(2006) 1889-1894.

Yang, J.; Tezel, U.; Li, K.; Pavlostathis, S.G. Prolonged exposure of mixed aerobic cultures to low temperature and benzalkonium chloride affect the rate and extent of nitrification. Bioresource Technol. 179(2015) 193-201.

Patrauchan, M.A.; Oriel, P.J. Degradation of benzyl dimethyl alkyl ammonium chloride by Aeromonas hydrophila sp. K. J. Appl. Microbiol. 94 (2003) 266-272.

Takinaka, S.; Tonoki, T.; Taira, K.; Murakami, S.; Aoki1, K. Adaptation of Pseudomonas sp. Strain 7-6 to Quaternary Ammonium Compounds and Their Degradation via Dual Pathways. Appl. Environ. Microbiol. 73 (2007)1797-1802.

Liffourrena, A.S.; Salvano, M.A.; Lucchesi, G.I. Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch. Microbiol. 1922010.) 471-476.

Tezel, U.; Tandukar, M.; Martinez, R.J.; Sobecky, P.A.; Pavlostathis, S.G. Aerobic biotransformation of n-tetradecylbenzyldimethylammoniumchloride by an enriched Pseudomonas spp. Community. Environ. Sci. Technol. 46(2012) 8714-8722.

Oh, S.; Tandukar, M.; Pavlostathis, S.G.; Chain, P.S.G.; Konstantinidis, K.T. Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ. Microbiol. 15 (2013) 2850-2864.

Bergero, M.F.; Liffourrena, A.S.; Opizzo, B.A.; Fochesatto, A.S.; Lucchesi, G.I. Immobilization of a microbial consortium on Ca-alginate enhances degradation of cationic surfactants in flasks and bioreactor. Int. Biodeter. Biodegr. 117(2017) 39-44.

Bergero, M.F.; Lucchesi, G.I. Degradation of cationic surfactants using immobilized bacteria: its effect on adsorption to activated sludge, Journal of Biotechnology (2010), https://doi.org/10.1016/j.jbiotec.2018.03.003.


Refbacks

  • There are currently no refbacks.