Détermination quantitative et qualitative de l'impact de la teneur en matière sèche sur le potentiel du biogaz de la digestion thermophile de boues activées

S. Maamri, M. Amrani

Abstract


Abstract: The feasibility of anaerobic digestion of waste activated sludge was studied in a batch digester under thermophilic conditions (55 ° C), the effect of the total solid content on the stability of the system and the performance of the process was examined in order to optimize the production of methane. For this, we studied eight digestions, which were launched with concentrations of 8.25, 15.5, 36.65, 41.5, 49.6, 58.5, 69.6 and 150.8 g / l. Then, during 32 days of digestion, the results obtained showed that there was a proportional relationship between the total solid content (8.25 to 69.6 g / l) and the volumetric production of the biogas with a stable methane yield 0.69 l / g VSr. When the total solids content was raised to 150.8 g / l, the reduction in volatile solid (VSr) and the methane yield decreased (0.49 l / gVSr). Indeed, with high feedstock, the efficiency of the biochemical conversion weakens owing to mass transfer limitations and or accumulations of inhibitors.

Résumé : La faisabilité de la digestion anaérobie des boues activées a été étudiée dans un digesteur en mode batch dans des conditions thermophiles (55 °C), l'effet de la teneur en matière sèche totale sur la stabilité du système et les performances du processus a été examinés et ce, afin d’optimiser la production du méthane. Pour cela, nous avons étudié huit digestions, qui ont été lancés avec des concentrations 8,25, 15,5, 36,65, 41,5, 49,6, 58,5, 69,6 et 150,8 g/L. Alors, durant 32 jours de digestion, les résultats obtenus ont montré qu’il y avait une relation proportionnelle entre le taux de matière sèche (8.25 à 69.6 g/l) et la production volumétrique du biogaz avec un stable rendement en méthane 0.69 l /g MVSr. Lorsque la teneur totale en solides était portée à 150,8 g / l, la reduction de la matière volatile solide (MVSr) et le rendement en méthane diminuent (0,49 l / g MVSr). En effet, à forte charge d’alimentation, l’efficacité de la conversion biochimique s’affaiblit à cause des limitations de transfert de masse et ou d’accumulations d’inhibiteurs.


Full Text:

PDF

References


Champiat, D.; Larpent, J.-P. Biologie des eaux. Méthodes et techniques, París, FR: Masson (1994) 374 .

Djafari, D.; Semcha, A.; Zentar, R.; Mekerta, B.; Touzi, A.; Hannache, H.; Elharti, M.; Zarrouk, A. Characterization and valorization of sludge of wastewater treatment plant (WWTPs) into cement industry. Journal of Materials and Environmental Sciences 8 (2017) 1350-1358.

Ladjel, F.; Abbou, S. Perspective de valorisation agricole et énergétique des boues issues des STEP en Algérie. Ministère des ressources en eau.(2014).

Djafari, D.; Mekerta, B.; Zentar, R., Semcha, A. Sludge of wwtps, from waste family to sustainable development. African Review of Science, Technology and Development. 3 (2018) 1-6.

Arthurson, V. Proper sanitization of sewage sludge: a critical issue for a sustainable society. Applied and environmental microbiology. 74 (2008) 5267-5275

Finkelstein, M.; Davison, B.H.; McMillan, J.D. Biotechnology for Fuels and Chemicals: The Twenty-Third Symposium, Springer Science & Business Media (2012).

Dohanyos, M.; Zabranska J.; Kutil, J.; Jeníček, P. Improvement of anaerobic digestion of sludge. Water Science and Technology. 49 (2004) 89-96.

Barber, W.P.; Stuckey, D.C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Research. 33 (1999) 1559-1578.

Dai, X.; Duan, N.; Dong, B., Dai, L. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Management 33 (2013) 308-316.

Eaton, A.D.; Franson, M.A.H.; American, Public Health, A.; American Water Works, A.; Water Environment; F. Standard methods for the examination of water & wastewater, American Public Health Association, Washington, DC, (2005).

Rodier, J.; Legube, B.; Merlet, N.; L'analyse de l'eau, Dunod, Paris (2009).

Effebi, K.R. Lagunage anaérobie: modélisation combinant la décantation primaire et la dégradation anaérobie (2009).

Liu, Y.; Lam, M.; Fang, H. Adsorption of heavy metals by EPS of activated sludge. Water Science and Technology 43 (2001) 59.

Marchal, N.; Bourdon, J.-L.; Richard, C. Les milieux de culture pour l'isolement et l'identification biochimique des bactéries (1982).

Singleton, P.B. Edition Duonod, Paris, 1999.

Tortora, G.; Funke, B.; Case, C. Introduction à la microbiologie (2e éd). Saint-Laurent (QC), Éditions du Renouveau pédagogique (2012).

Garcia, J.-L.; Guyot, J.-P.; Ollivier, B.; Trad, M.; Paycheng, C. Ecologie microbienne de la digestion anaérobie: techniques de numération et d'isolement. Cah ORSTOM, sér Biol 45 (1982) 3-15.

Altaş, L. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials 162 (2009) 1551-1556.

Lay, J.-J.; Lee, Y.-J.; Noike, T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research. 33 (1999) 2579-2586.

Tang, G.-L.; Huang, J.; Sun, Z.-J.; Tang, Q.-q.; Yan, C.-h.; Liu, G.-q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering 106 (2008) 80-87.

Syaichurrozi, I.; Sumardiono, S. Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Research Journal of Applied Sciences, Engineering and Technology 7 (2014) 2798-2805.

Yen, H.-W.; Brune, D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource technology. 98 (2007) 130-134.

Yang, Y.; Yu, K.; Xia, Y.; Lau, F.T.; Tang, D.T.; Fung, W.C.; Fang, H.H.; Zhang, T. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Applied microbiology and biotechnology. 98 (2014) 5709-5718.

Ariesyady, H.D.; Ito, T.; Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water research 41 (2007) 1554-1568.

Riviere, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME journal. 3 (2009) 700

Yu, H.; Wang, Z.; Wu, Z.; Zhu, C. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community. Scientific reports 6 (2016) 20111.

Borja, R.; Banks, C.J.; Wang, Z.; Mancha, A. Anaerobic digestion of slaughterhouse wastewater using a combination sludge blanket and filter arrangement in a single reactor. Bioresource technology 65 (1998) 125-133.

Gallert, C.; Winter, J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Applied microbiology and biotechnology 48 (1997) 405-410.

Yu, H.-Q.; Fang, H.H.; Gu, G.-W. Comparative performance of mesophilic and thermophilic acidogenic upflow reactors. Process Biochemistry 38 (2002) 447-454.

Chen, T.-H.; Hashimoto, A.G. Effects of pH and substrate: inoculum ratio on batch methane fermentation. Bioresource technology 56 (1996) 179-186.

Hashimoto, A.G. Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biological wastes 28 (1989) 247-255.

Duan, N.; Dong, B.; Wu, B.; Dai, X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresource Technology 104 (2012) 150-156.

Ferrer, I.; Vázquez, F.; Font, X. Long term operation of a thermophilic anaerobic reactor: process stability and efficiency at decreasing sludge retention time. Bioresource technology 101 (2010) 2972-2980.

Wang, F.; Hidaka, T.; Uchida, T.; Tsumori, J. Thermophilic anaerobic digestion of sewage sludge with high solids content. Water science and technology 69 (2014) 1949-1955.

Wang, T.; Chen, J.; Shen, H.; An, D. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability. Bioresource technology 217 (2016) 265-270.

Güngör-Demirci, G. Demirer. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresource technology 93 (2004) 109-117.

Raposo, F.; Banks, C.; Siegert,I.; Heaven, S.; Borja R. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry. 41 (2006) 1444-1450

Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresource technology. 98 (2007) 929-935.

Chen, J.L.; Ortiz, R.; Steele, T.W.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: a review. Biotechnology advances. 32 (2014) 1523-1534.

Swanwick, J.; Shurben, D.; Jackson, S. A survey of the performance of sewage sludge digesters in Great Britain (1969).

Vallee, B.L.; Ulmer, D.D. Biochemical effects of mercury, cadmium, and lead. Annual review of biochemistry 41 (1972) 91-128.

Mosey, F.; Swanwick, J.; HUGHES, D.A. Factors affecting the availability of heavy metals to inhibit anaerobic digestion. Water Pollution Control 70 (1971)668-678.

Lin, C.-Y.; Chen, C.-C. Effect of heavy metals on the methanogenic UASB granule. Water Research 33 (1999) 409-416.

Hickey, R.F.; Vanderwielen, J.; Switzenbaum, M.S. The effect of heavy metals on methane production and hydrogen and carbon monoxide levels during batch anaerobic sludge digestion. Water Research. 23 (1989) 207-218.

Lawrence, A.W.; McCarty, P.L. The role of sulfide in preventing heavy metal toxicity in anaerobic treatment. Journal (Water Pollution Control Federation) (1965) 392-406.

Shen, C.; Kosaric, N.; Blaszczyk, R. The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS). Water Research 27 (1993) 25-33.

Shin, H-S.; Oh, S-E.; Lee, C-Y. Influence of sulfur compounds and heavy metals on the methanization of tannery wastewater. Water science and technology. 35 (1997) 239-245.

Hayes, T.D.; Theis, T.L. The distribution of heavy metals in anaerobic digestion. Journal (Water Pollution Control Federation). (1978) 61-72.

Mosey, F.; Hughes, D.A. The toxicity of heavy metal ions to anaerobic digestion. Water Pollution Control. (1975).

Oleszkiewicz, J.; Sharma, V. Stimulation and inhibition of anaerobic processes by heavy metals—a review. Biological Wastes 31 (1990) 45-67.

Bhattacharya, S.K.; Uberoi, V.; Madura, R.L.; Haghighi-Podeh, M.R. Effect of cobalt on methanogenesis. Environmental technology 16 (1995) 271-278.

Bhattacharya, S.K.; Madura, R.L.; Uberoi, V.; Haghighi-Podeh, M.R. Toxic effects of cadmium on methanogenic systems. Water Research 29 (1995) 2339-2345.

Bhattacharya, S.K.; Safferman, A.G. Determination of bio available nickel concentrations in inhibited methanogenic systems. Environmental Technology 10 (1989) 725-730.

Gould, M.S.; Genetelli, E.I. Heavy metal complexation behavior in anaerobically digested sludges. Water Research 12 (1978) 505-512.


Refbacks

  • There are currently no refbacks.