Elimination of Malachite Green on granular activated carbon prepared from olive stones in discontinuous and continuous modes

M. Benzekri Benallou, N. Douara, M. A. Chemrak, Z. Mekibes, N. Benderdouche, B. Bestani


Abstract: The objective of this study is the removal of a cationic dye, Malachite Green (MG), by granular activated carbon (GAC)  based on olive stones in discontinuous and continuous processes.

The parametric study of batch adsorption of Malachite Green on granular activated carbon at room temperature has enabled us to highlight the dependence of the efficiency of this adsorbent on the various operating parameters (pH, initial concentration and mass of adsorbent). The Langmuir model was found to describe the adsorption isotherm of Malachite green on the studied GAC. The improvement of the performance of the fixed bed adsorption column requires that the breakthrough curves can be predicted according to the various system parameters (height, flow velocity and concentration of the pollutant). Experimental data were correlated with different mathematical models such as Bohart - Adams, Thomson, and Yoon - Nelson. All models used for  the GAC studied were used successfully to describe the breakthrough curves of the dye.

Full Text:



Pankow, J. F. Aquatic Chemistry Concepts, lewis Pubishers, Chelsea, Michigan 1991.

Waranusantigul, P.; Pokethitiyook, P.; Kruatrachue, M.; Upatham, E.S. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution 125(3) (2003) 385–392.

Ramakrishna, K. R.; Viraraghavan, T. Dye removal using low cost adsorbents. Water Science and Technology 36(2-3) (1997) 189–196.

O’Neill, C.; Hawkes, F. R.; Hawkes, D. L.; Lourenco, N. D.; Pin-heiro, H. M.; Dele, W. Colour in textile effluents – sources, measurement, discharge consents and simulation: a review. J. Chem. Technol. Biotechnol. 74(11) (1999) 1009-1018.

Juang, R. S.; Wu, F. C.; Tseng, R. L. The Ability of Activated Clay for the Adsorption of Dyes from Aqueous Solutions. Environmental Technology 18(5) (1997) 525–531.

Mamdouh, N. M.; El-Geundi, M.S. Comparative cost of color removal from textile effluents using natural adsorbents. J. Chem. Technol. Biotechnol. 50 (1991) 257-264.

Benallou Benzekri, M.; Benderdouche, N.; Bestani, B.; Douara, N.; Duclaux, L. Valorization of olive stones into a granular activated carbon for the removal of Methylene blue in batch and fixed bed modes. Journal of Materials and Environmental Sciences 9(1) (2018) 272–284.

Douara, N.; Bestani, B.; Benderdouche, N.; Duclaux, L. Sawdust-based activated carbon ability in the removal of phenol-based organics from aqueous media. Desalination and Water Treatment 57(12) (2015) 5529–5545.

Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM Annual Book. 4, section 15, 4607 (1999).

Stavropoulos, G.G.; Zabaniotou, A.A. Production and characterization of activated carbons from olive-seed waste residue. Micropor. Mesopor. Mat. 82 (2005) 79-85.

Calvet, R.; Terce, M.; Arvieu, J.C. Mise au point bibliographique: Adsorption des pesticides par les sols et leurs constituants. Ann. Agron. 31(4)(1980) 385-427.

Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 4 0(1918) 1361-1403.

Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 57(1906) 385-470.

Aksas, H.; Cherifi-Nacy, H.; Babaci, N.; Louhab, K. Etude potentielle de mélange des adsorbants naturels (grignons d’olive et noyaux de dattes) pour l’adsorption du chrome. Algerian Journal of Environmental Science and Technology 2 (2016) 48-57.

Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi, A.; Shojaipour, F.; Soylak, M.; Purkait, M.K. A novel acorn based adsorbent for the removal of brilliant green. Desalination 281(2011) 226–233.

Nurhadi, M.; Widiyowati, I.I.; Wirhanuddin, W.; Chandren, S. Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis 14(1) (2019) 17-27.

Hameed, B.H. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials 162(2-3) (2009) 939–944.

Tavlieva, M.P.; Genieva, S.D.; Georgieva, V.G.; Vlaev, L.T. Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science 409(2013) 112–122.

Nandi, B. K.; Goswami, A.; Purkait, M.K. Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials 161(1) (2009) 387–395.

Zhang, W.; Yan, H.; Li, H.; Jiang, Z.; Dong, L.; Kan, X.; Cheng, R. Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chemical Engineering Journal 168(3) (2011) 1120–1127.

Gong, R.; Jin, Y.; Chen, J.; Hu, Y.; Sun, J. Removal of basic dyes from aqueous solution by sorption on phosphoric acid modified rice straw. Dyes and Pigments 73(3) (2007) 332–337.

Çolak, F.; Atar, N.; Olgun, A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chemical Engineering Journal 150(1) (2009) 122–130.

Hameed, A. K.; Dewayanto, N.; Dongyun, D.; Nordin, M. R.; Ab Rahim, M. H. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica. Bulletin of Chemical Reaction Engineering & Catalysis 11(2) (2016) 250.

Kareem, S. H.; Ali, I. H.; Jalhoom, M. G. Synthesis and Characterizationof Organic Functionalized Mesoporous Silica and Evaluate Their Adsorptive Behavior for Removal of Methylene Blue From Aqueous Solution. American Journal of Environmental Sciences 10(1) (2014) 48–60.

Tan, I.A.W.; Ahmad, A.L.; Hameed, B. H. Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies. Journal of Hazardous Materials 154(1-3) (2008) 337–346.

Chemrak, M. A.; Benderdouche, N.; Bestani, B.; Benzekri Benallou, M.; Cagnon, B. Removal of mercury from natural gas by a new activated adsorbent from olive stones. The Canadian Journal of Chemical Engineering 96(1) (2017) 241–249.

Taty-Costodes, V. C.; Fauduet, H.; Porte, C.; Ho, Y.S. Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column. Journal of Hazardous Materials 123(1-3) (2005) 135–144.

Han, R.; Zhang, J.; Zou, W.; Xiao, H.; Shi, J.; Liu, H. Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column. Journal of Hazardous Materials 133(1-3) (2006) 262–268.

Bohart, G.S.; Adams, E.Q. Some aspects of the behavior of charcoal with respect to chlorine. J. Chem. Soc. 42(1920) 523-544.

Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66(1944) 1664-1666.

Yoon, Y.H.; Nelson, J.H. Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 45(1984) 509-516.


  • There are currently no refbacks.