Étude de l’hydrolyse chimique de la biomasse lignocellulosique

F.Z. Zoubiri, S. El-bey, R. Rihani, F. Bentahar

Abstract


Abstract: The waste generated by the apricot processing industry represents an interesting source for recovering industrial waste into renewable energy while eliminating this waste in order to contribute to the protection of the environment in the context of sustainable development. This work concerns the study of the apricot hydrolysis for bioethanol production; the residues are generated from the apricot processing industry. Different parameters have been optimized such as: the (mass / water) ratio (5%, 7.5%, 10%), particle size, etc. For such case, chemical pretreatment has been carried out using acid, oxidative and alkaline pretreatments with different concentrations (0.5%, 1%, 4%, 7%) (V/V) at a temperature of 80 °C. It has been found that the hydrolysis of lignocellulosic biomass using sulfuric acid (1%) led to the total sugars extraction of about 93.05 g/L.

Résumé : Les déchets issus de l’industrie de transformation de l’abricot présentent une source intéressante de déchets qui peuvent être valorisés en énergies renouvelables et leurs éliminations contribuent grandement à la protection de l’environnement. Ce travail concerne l’étude de l’hydrolyse des résidus d’abricot dans le but de produire un biocarburant en particulier, le bioéthanol. Différents paramètres ont été optimisés à savoir : le rapport (masse/ eau) (5% ; 7,5% ; 10%), la granulométrie des déchets, etc. Pour cela, des traitements chimiques ont été réalisés en utilisant des milieux alcalins, acides et oxydés à différentes concentrations (0,5%,1%, 4%, 7%) (V/V) à une température de 80°C. A l’issue de notre travail, l’hydrolyse de la biomasse lignocellulosique par l’acide sulfurique à 1% a permis de libérer jusqu’à 93,05 g/L de sucres totaux.

Full Text:

PDF

References


Agarwal, A. Biofuels applications as fuels for internal combustion engines. Progress in Energy and Combustion Science 33(2007) 233-271.

Akin, E.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca L) varieties. Food Chemistry 107(2008) 939–948.

Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing, Progress in Energy and Combustion Science 34(2008) 551-573.

Boussarsar. H. Application de traitements thermique et enzymatique de solubilisation et saccharification de la fraction hémicellulosique en vue de la valorisation de la bagasse de canne à sucre. Thèse de Doctorat. Université de Reims Champagne-Ardenne, Université de Sfax pour le Sud (2008).

Chen, Y.; Stevens, MA.; Zhu, Y.; Holmes. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(2013)1–10.

Del Campo, I. Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Industrial crops and products 24(2006) 214-221.

Didderen, I.; Destain, J.; Thonart, P. La production d’éthanol à partir de biomasse lignocellulosique. Fôret Wallonne 104(2010) 39-45.

Gaoxiang, Qi. Hydrotropic pretreatment on wheat straw for efficient biobutanol production. Biomass and Bioenergy. 122 (2019)76–83.

Gonçalves, FA.; Ruiz, HA.; Nogueira, CC .; Santos, ES.; Teixeira, JA.; Macedo, GR. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semisimultaneous saccharification and fermentation strategies. Fuel 131(2014) 66–76.

Gong, CS.; Maun, CM.; Tsao, GT. Direct fermentations of cellulose to ethanol by a cellulolytic filamentous Fungus Monilia sp. Biotechnology Letters 3 (1981) 131-144.

Grethlein, HE. Acid hydrolysis review. In. Anaerobic digestion and carbohydrate hydrolysis of waste. Ed.Elsevier.Londres (1985).

Hernánde, D. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal 262 (2015) 939–945.

Kuhar, S.; Nair, LM.; Kuhad, RC. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and eventual conversion to ethanol. Can J Microbiol 54(2008) 305–313.

Playne, MJ. Increased digestibility of bagasse by pretreatment with alkalis and steam explosion. Biotechnol Bioeng. 26(1984) 426–433.

Madadi, M.; Tu, Y.; Abbas, A. Pretreatment of Lignocelollusic Biomass Based on Improving Enzymatic Hydrolysis. International Journal of Applied. Science. Biotechnol. 5(2017)1-11.

Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(2005) 673-686.

Saritha, M.; Arora, A. Lata. Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J Microbiol 52(2012) 122–130.

Sun, Ye.; Cheng, JJ. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology 96(2005)1599–1606.

Taherzadeh, JM.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(2008)1621–1651.

Tari, C. Dilute-Acid Hydrolysis of Apple, Orange, Apricot and Peach Pomaces as Potential candidates for Bioethanol Production. Biobased Materials and Bioenergy 7(2013)1–14.

Wunna, K.; Nakasaki, K.; Auresenia, JL.; Abella, LC.; Gaspillo, PD. Effect of Alkali Pretreatment on Removal of Lignin from Sugarcane Bagasse. Chemical Engineering Transactions 56(2017) 1831-1836.

Wang, C. Structure and distribution changes of Eucalyptus hemicelluloses during hydrothermal and alkaline pretreatments. International Journal of Biological Macromolecules 133(2019)514-521.

Zhu, Z. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries AIMS. Bioengineering 2(2015) 449-468.


Refbacks

  • There are currently no refbacks.