Recherche de molécules bioactives d’intérêt à partir d’une collection de souches bactériennes rhizosphèriques et étude de leur effet antifongique

H. Oulebsir-Mohandkaci, F. Tihar-Benzina, C. Ait Belkacem, A.N. Belgrade

Abstract


Abstract: The aim of the present study is to evaluate the potential of a collection of rhizobacteria strains to produce bioactive compounds of biotechnological interest, as well as the demonstration of its antifungal power.  

The isolates studied belong to the Pseudomonas spp. fluorescents group and the genus Bacillus sp. After determining their physiological and biochemical characteristics, the isolates were tested for their ability to produce hydrolytic enzymes with other molecules.

The study of the antagonistic effect of the isolated bacteria against Verticillium dahliae agent of the olive verticillium wilt, was also carried out. The bacterial isolates come from the rhizospheric soil of three crops (loquat, barley and potato) in the Boumerdes region (coastal region in central Algeria).The study of the production of different enzymes such as lipases and caseinases, as well as indole acetic acid (AIA) and cyanid hydrogeniecis (HCN), shows a high production for the majority of the tested strains. In addition, in vitro inhibition of mycelium growth tests using these bacterial strains againts Verticillium dahlliae isolates has given very satisfactory results, with rates of inhibition of mycelial growth reaching 70% in some cases.

Therefore, the isolated bacteria have, for the most part, antagonistic properties against the tested phytopathogenic fungus. They can also be exploited in plant biotechnology in the phytostimulation and improvement of plant growth and nutrition.

Résumé :

Le but de la présente étude est  l’évaluation des potentialités  d’une collection de souches de rhizobactéries à produire des composés bioactifs d’intérêt biotechnologique ainsi que la mise en évidence de son pouvoir antifongique. Les isolats étudiés appartiennent aux groupes Pseudomonas spp. fluorescents et au genre Bacillus sp.  En effet, après  la détermination de leurs caractères physiologiques et biochimiques, les isolats ont été testés pour déterminer leur capacité à produire des enzymes à effet hydrolytique avec d’autres molécules d’intérêt agronomique. L’étude de l’effet antagoniste des bactéries isolées contre Verticillium dahliae agent de la verticilliose de l’olivier, a été également réalisée. Les isolats bactériens proviennent du sol rhizosphèrique de trois plantes cultivées (Nèfle, Orge et pomme de terre) dans la région de Boumerdes (région côtière située au centre de l’Algérie).

L’étude de la production des différentes enzymes telles que les lipases et les caseinases, ainsi que l’acide indole acétique (AIA) et l’acide cyanhydrique (l’HCN) montrent une bonne de  production pour la majorité des souches testées.

Par ailleurs, l’étude de l’effet inhibiteur des souches bactériennes effectuées in vitro contre le Verticillium dahliae  à donnée des résultats très satisfaisant avec des taux d’inhibition de la croissance mycélienne qui peuvent atteindre 70% dans certain cas.


Full Text:

PDF

References


Faugier, A. Diversité bactérienne des sols : accès aux populations à effectifs moniritaires “ the rare biosphere ”. Sciences du Vivant [q-bio]. Thèse de doctorat. Ecole Centrale de Lyon, (2010).

Tarlera, S.; Jangid, K.; Ivester, AH.; Whitman, WB.; Williams, MA. Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. FEMS Microbiology Ecology 64 (2008.) 129-140.

Bashir, 0.; Khan, K.; Hakeem, K.R.; Mir, N.A.; Rather, G.H.; Mohiuddin, R. Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosystem. Chapter •From book Interaction Among Rhizospheric Microbes, Soil, and Plant Roots: Influence on Micronutrient Uptake and Bioavailability. January 2016, DOI: 10.1007/978-3-319-29573-2_15

Van Loon, L.C.; Bakker, P.A.H.M.; Pieterse, C.M.J. Prospects and challenges for practical application of rhizobacteriamediated induced systemic resistance ». In: Induced Resistance in Plants Against Insects and Diseases (A. Schmitt and B. Mauch-Mani, eds), IOBC/WPRS Bulletin 25(6)(2002) 75-82.

Weller, D.M. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology; 97 (2007) 250-6.

Morgan, J.A.; Bending, G.D.; White, P.J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany 56(2005)1729–1739.

Benchabane, M.; Toua, D.; Ameur, D. Exploitation et valorisation des rhizobactéries En biotechnologie végétale : Phytostimulation et amélioration de la nutrition des plantes. Revue Agrobiologia 2(2012)17-20.

Benzina, F.; Sahir-Halouane, F.; Hamed, K. Algerian isolates of fluorescent Pseudomonas spp. as potential biological control against wilt pathogen (Verticillium dahliae). Plant Omics journal 9(1) (2016) 48 -60.

Nautiyal, C.S. Biocontrol of plant diseases for agricultural sustainability. In: Upadhyay, RK.;, Mukerji, K.G.; Chamola, B.P.; Biocontrol Potential and its Explotation in Sustainable Agriculture, Vol.I: Crop Diseases, Weeds, and Nematodes. Ed. Kluwer Academic, New York , (2001)9-23.

Joffin, J.N.; Leyral, G. Microbiologie technique, TI-Dictionnaire des techniques. Ed. Bordeaux:CRDP d’aquitaine. (2006) 368 p.

Pervot, A.R.Traité de systématique bactérienne. Ed. Dunod. T1, (1961) 471p.

Singleton,P. Bactériologie pour la médecine. La biologie et la Biotechnologie. Ed. Dunod. Paris. (2005)541 p.

Perry, J.J.; Staley, J.T.; S. Lorey S. Microbiologie, Cours et questions de révision. Ed. Dunod. Paris. (2004) 890 p.

Guiraud, J.P., Microbiologie alimentaire. Ed. Dunod. Paris, 2003.

Sierra, G. A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Chemistry, Medicine. Antonie van Leeuwenhoek. 23(1957)15-22.

Kaldewey, H. Transport and other modes of movements of hormones (mainly auxins). In Encyclopedia of plant physiology. Hormonal Regulation of Development II (T.K.Scott, ed.), 10(1984) 80-148. Springer-Verlag, Berlin.

Naik, P.R.; Sakthivel, N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. Strain PUP6 with plant-growth-promoting traits and antifungal potential. Research in Microbiology 157(2006) 538-546.

Meena, B.; Marimuthu, T.; Vidhyasekaran, P.; Velazhahan, R. Biological control of root rot of groudnut with antagonistic Pseudomonas fluorescens. Journal of Plant Diseases and Protection 108(2001) 369 – 381.

Verma, M.; Satinder, K.; Brar, R.D.; Tyagi, R.Y.; Surampalli, J.; Valero, R. Antagonistic fungi Trichoderma spp: Panoply of Biological control. Biochemical Engineering Journal 37 (2007)1-20.

Chandrashekara, K.N.; Manivannan, S.; Chandrashekara, C.; Chakravarthi, M. Biological Control of Plant Diseases. Chapter • January 2012 In book: Ecofriendly Innovative Approaches in Plant Disease Management, Chapter: 10, Publisher: International Book Distributors, Editors: Vaibhav K. Singh Yogendra Singh Akhilesh Singh.

Palleroni, N. Gram negative aerobic rods and cocci : Family I Pseudomonadaceae. In: Bergey’s manual of bacteriology 1. Ed. Krerg and Holt, William and Wilkins. Baltimore. (1984)141-168.

Jacques, M.A. Ecologie quantitative et physiologie de la communauté bactérienne épiphylle de Cichorium endiva var .Latifolia. Thèse doctorat, université de Parissud- Orsay,France, (1994)111p.

Bossis, E.; Lemanceau, P.; Latour, X.; Gardan L. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie. 20(2000) 51-63.

Lemanceau, P.; Barretx, M.; Mazurier, S.; Mondy, S.; Pivato, B.; Fort, T.; Vacher, C. Plant communication with associated microbiota in the spermosphere, Rhizosphere and Phyllosphere : 101-133 Chapter in Advances in Botanical Research. 2016 , V .82. ISSN 0065-2296. Elsevier Ltd.

Csotonyi, JT.; Swiderski, J.; Stackebrandt, E.; Yurkov, V. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environmental Microbiology Reports 2(2010) 651-656.

Galand, PE.; Lovejoy, C.; Pouliot, J.; Garneau, ME.; Vincent, WF. Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: A stamukhi lake and its source waters. Limnology and Oceanography 53(2008) 813-823.

Khemili-Talbi, S.; Kebbouche-Gana, S.; Akmoussi-Toumi, S.; Gana, M.L.; Lahiani, S.; Angar, Y.; Ferrioune, I. Biodegradation of Petroleum hydrocarbons and Biosurfactant production by an extremely halophilic Archaea Halovivax sp. A21, Algerian Journal of Environmental Science and Technology 3:3-B (2017) 56-64.

Spiers, A.J.; Buckling, A.; Rainey, P.B. The causes of Pseudomonas diversity. Journal of Microbiologie 146 (2000) 2345–2350.

Battle, A.R.; Petrov, E.; Pal, P.; Martinac B. Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Letters 583(2009) 407–412.

Tihar-Benzina, F.; Hameed, K. M.; Sahir-halouane, F. Biotechnological studies of several isolates of fluorescent pseudomonads from algerian soil as potential biological control agents against olive wilt pathogen Verticillium dahliae. Egyptian Journal of Biological Pest Control. 25(3) (2015) 721-728.

Oulebsir-Mohandkaci, H.; Khemili-Talbi, S.; Benzina, F.; Halouane, F. Isolation and identification of entomopathogenic bacteria from algerian desert soil. study of their effects against migratory locust Locusta migratoria. Egyptian Journal of Biological Pest Control. 25(3) (2015) 739-746.

Loper, J. E.; Gross, Æ. H. Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology 119(2007)265–278.

Viswanathan, R.; Samiyappan, R. Antifungal activity of chitinases produced by some fluorescent Pseudomonads against Colletotrichum falcatum Went. Causing red rot disease in sugarcane. Microbiological Research 155(2001) 309– 314.

Persello-Cartieaux, F.; Nussaume, L.; Robaglia, C. Tales from the underground: molecular plant-rhizobacteria interactions. Plant, Cell and Environment 26(2003)189–99. doi: 10.1046/j.1365-3040.2003.00956.x.

Laville, J.; Blumer, C.; Von Schroetter, C.; Gaia, V.; Défago, G.; Keel, C.; Haas, D. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology 180(12) (1998)3187-96.

Remans, R.; Croonenborghs, A.; Torres Gutierrez, R.; Michiels, J.; Vanderleyden, J. Effects of plant growth promoting rhizobacteria on nodulation of Polus vulgaris L. are dependent on plant P nutrition. European Journal of Plant Pathology 119(2007)341–351 DOI 10.1007/s10658-007-9154-4.

Blumer, C.; Haas, D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173(2000)170-177.

Thomashow, L.S.; Weller, D.M. Role of antibiotics and siderophores in biocontrol of take-all disease of Nader Hassan- zadeh, wheat. Plant Soil 129 (1990) 93–99.

Pierson, E.A.; Weller, D.M. Use of mixture of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Ecology and epidemiology-Phytopathology, 84(9)(1994) 940-947.

Amer, G.A.; Utkhede, R.S. Development of formulation of biological agents for the management of root rot lettuce and cucumber. Canadian Journal of Microbiology 46 (9) (2000) 809–816.

Manjula, K.; Krishna, G.K.; Podile, A.R. Whole cell of Bacillus subtilis AF1 proved more effective than cell-free and chitin-ase-based formulations in biological control of citrus fruit rot and groundnut rust. Canadian Journal of Microbiology 50 (9) (2004) 737–744.

Collins, D.P.; Jacobsen, B. Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Journal of Biological Control26 (2) (2003)153–161.

Jataraf, J.; Radhakrim, N.V.; Hannk, P.; Sakoof, R. Biocontrol of tomato damping-off caused by Pythium aphanidermatum. Biocontrol 15(2005) 55–65.

Mercado-Blanco, J.; Iguez-Jurado, D.R.; Hervas, A.; Jimenez-Dıaza, R.M. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Journal of Biological Control. 30 (2004) 474–486

Jorjani, M.; Heydari, A.; Zamanizadeh, H.R.; Rezaee, S.; Naraghi, L. Controlling sugar beet mortality disease by ap-plication of new bioformulations. Journal of Plant Protection Research 52 (3) (2011) 303–307.

Chen, C.; Belanger, R.R.; Benhamou, N.; Paullitz, T.C. Defense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiology and molecular plant pathology 56 (1) (2000) 13–23.

Gómez-Lama Cabanás, C.; Legarda, G.; Ruano-Rosa, D.; Pizarro-Tobías, P.; Valverde-Corredor, A.; Niqui, J. L.; Triviño, J. C.; Roca, A.; Mercado-Blanco, J. Indigenous Pseudomonas spp. strains from the olive (Olea europaea l.) rhizosphere as effective biocontrol agents against Verticillium dahliae: from the host roots to the bacterial genomes. Frontiers in Microbiology, 9 (277) (2018) 1-9.

Kyselkova, M.; Kopecky, J.; Frapolli, M.; Defago, G.; Sagova-Mareckova, M.; Grundmann, G.; Moenne-Loccoz, Y. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. The International Society for Microbial Ecology ISME Journal 3(2009) 1127–1138.

Gómez-Lama Cabanás, C.; Ruano-Rosa, D.; Legarda, G.; Pizarro-Tobías, P.; Valverde-Corredor, A.; Triviño, J. C.; Roca, A.; Mercado-Blanco, J. Bacillales members from the olive rhizosphere are effective biological control agents against the defoliating pathotype of Verticillium dahliae. Agriculture. 8, 90(2018)1-23.

Janik, P.; Zawisza, B.; Talik, E.; Sitko, R. Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes. MicrochimicaActa (2018) 185: 117.


Refbacks

  • There are currently no refbacks.