Heterotrophic denitrification of contaminated groundwater using arachis hypogaea. l shell as carbon source

O. Benbelkacem, K. Benrachedi, F. Boumechehour, C. Alioua

Abstract


Abstract: In this research, agricultural waste, Arachis hypogaea.L shells (peanut shells) was investigated for use as carbon source and biofilm carrier to remove nitrate from groundwater in batch reactor laboratory. The feasibility of heterotrophic denitrification of a high nitrate concentration groundwater using a natural carbon source was studied, a series of batch tests was performed with synthetic groundwater to exanimate the effects of various environmental and operational factors such as temperature, pH, initial nitrate concentration and finally the mass of powder of Arachis hypogaea.L shells on the rate of heterotrophic denitrification. A range of physic chemical analysis was performed including: Infrared, granulometry, spectroscopy atomic absorption and Scanning Electron Microscope (SEM).Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. Using Arachis hypogaea.L shells as organic substratum of varying size classes, we found that finer-graine showed higher rates of denitrification compared to large grains, likely due to increased surface area per volume of substratum.Our findings suggest that Arachis hypogaea.L shell play an important role in N removal because they gave a reduction percentage of 90%.

Full Text:

PDF

References


Soares, MI.M.; Brenner, A.; Yevzori, A.; Messalem R.; Leroux, Y.; Abeliovich, A. Denitrification of ground-water: Pilot-plant testing of cotton-packed bioreactor and post-microfiltration, Water Science and Technology 42(1-2) (2000) 353-359.

Morteza, M.; Shamsuddin, S.; Kumars, E. Removal Techniques of Nitrate from Water, Asian Journal of Chemistry 26 (2014) 7881-7886.

WHO., Guidelines for Drinking-water Quality Incorporating First and Second Addenda, Volume 1, Recommendations, 3rd ed. World Health Organization Geneva (2008).

NHFPC. Standards for Drinking Water Quality, 1st ed. National Health and Family Planning Commission of the PRC, Beijing (2006).

Alonso Fernández, J.R.; García Nieto, P.J.; Díaz Mu˜niz, C.; Álvarez Antón, J.C. Modeling eutrophication and risk prevention in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines analysis, Ecological Engineering 68 (2014) 80-89.

Kiedrzy´nska, E.; Kiedrzy´nski, M.; Urbaniak, M.; Magnuszewski, A.; Skłodowski, M.; Wyrwicka, A.; Zalewski, M. Point sources of nutrient pollution in the low land river catchment in the context of the Baltic Sea eutrophication. Ecological Engineering 70 (2014) 337-348.

Kłodowskaa, J.; Rodziewicza, W.; Janczukowicza, A.; Cydzik-Kwiatkowskab, K. Effect of citric acid on the efficiency of the removal of nitrogen and phosphorus compounds during simultaneous heterotrophic-autotrophic denitrification (HAD) and electro coagulation, Ecological Engineering 95 (2016) 30-35.

Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, PA.; Schindler, D.W.; Schlesinger, WH.; Turnan, D.G. Human alteration of the global nitrogen cycle: sources and consequences, Ecological Application 7 (2007) 737-750.

Inwood, S.E.; Tank, J.T.; Bernot, M.J. Factors Controlling Sediment Denitrification in Midwestern Streams of Varying Land Use, Microbial Ecolog 53(2) (2007) 247-258.

Angar, Y.; Kebbouche-Gana, S.; Djellali, N.E. Comparison of biological nitrate reduction Effectiveness of Two strains Isolated from Activated sludge. Asian Journal of Chemistry 28(2) (2016) 463-466.

Winneberger, J.H. Nitrogen, Public Health and the Environment. Ann Arbor Science Publishers, Inc. Annal Arbor Michigan. (1982) 5.

Pu, J.Y.; Feng, C.P.; Liu, Y.; Li, R., Kong, Z.; Chen, N.; Tong, S.; Hao, C.B.; Liu, Y. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater, Bioresource Technology 25 (2014) 117–123.

Qiaochong, H.; Chuanping, F.; Tong, P.; Nan, C.; Qili, H.; Chunbo, H. Denitrification of synthetic nitrate-contaminated groundwater combined with rice washing drainage treatment. Ecological Engineering 95 (2016) 152-159.

Shih-hui P. Autotrophic denitrification of groundwater in a granular sulfur-packed up-flow reactor. Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment (2007).

Pan, Y.; Ni, B.J.; Bond, P.L.; Ye, L.; Yuan, Z. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Research 47(10) (2013) 3273-3281.

Desloover, J.; Vlaeminck, S.E.; Clauwaert, P.; Verstraete, W.; Boon, N. Strategies to mitigate N2O emissions from biological nitrogen removal systems, Current Opinion in Biotechnology 23(3) (2012) 474-482.

Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions, Water Research 46(4) (2012) 1027-1037.

Law, Y.; Ye, L.; Pan, Y.; Yuan, Z. Nitrous oxide emissions from wastewater treatment processes, Philosophical Transactions Royal Society 367 (2012) 1265-1277.

Qilin, W.; Guangming, J.; Liu, Y; Maite, P.; Zhiguo, Y. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor, Water research 62 (2014) 202 -210.

Wen, J.P.; Pan, L.; Du, L.P.; Mao, G.Z. The denitrification treatment of low C/N ratio nitrate-nitrogen wastewater in a gas-liquid-solid fluidized bed bioreactor, Chemical Enineering Journal 94(2) (2003) 155-159.

Rui, L.; Chuanping, F.; Weiwu, H.; Beidou, X.; Nan, C.; Baowei, Z.; Ying, L.; Chunbo, H.; Jiaoyang, P. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Research 89 (2016)171-179.

Wang, J.L.; Yang, N. Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry 39(10) (2004) 1223-1229.

Wang, Q.H.; Feng, C.P.; Zhao, Y.X.; Hao, C.B. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology 100 (2009) 2223-2227.

Gomez, M.A.; Galvez, J.M.; Hontoria, E.; Gonzalez-Lopez, J. Influence of ethanol concentration on biofilm bacterial composition from a denitrifying submerged filter used for contaminated groundwater, Bioscience Bioengineering 95(3) (2003) 245-251.

Akunna, J.C.; Bizeau, C.; Moletta, R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research 27 (1993) 1303-1312.

Kim, Y.S.; Nakano, K.; Lee, T.J.; Kanchanatawee, S.; Matsumura, M. On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source,Journal of Bioscience Bioengineering 93(3) (2002) 303-308.

Yingxin, Z.; Baogang, Z.; Chuanping, F.; Fangyuan, H.; Peng, Z.; Zhenya, Z.; Yingnan, Y.; Norio, S. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment, Journal of Bioresource Technology 107 (2012) 159-165.

Liu, Q.J.; Hu, X.; Wang, J.L. Performance characteristics of nitrogen removal in SBR by aerobic granules. Chinese Journal of Chemistry Engineering 13(5) (2005) 669-672.

Chen, Z.Q.; Wen, Q.X.;Wang, J.L.; Li, F. Simultaneous removal of carbon and nitrogen from municipal-type synthetic wastewater using net-like rotating biological contactor (NRBC). Process Biochemistry 41(12) (2006) 2468-2472.

Liu, L.H.; Koenig, A. Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biocheistry 37 (2002) 885-893.

Mohseni-Bandpi, A.; Elliott, D.J.; Zazouli, M.A. Biological nitrate removal processes from drinking water supply-a review. Journal of Environmental Health Science and Engineering 11 (2013) 35-45.

Konstantinos, A.; Karanasios, IA.; Vasiliadou, A.G.; Tekerlekopoulou, C.S.; Akratos, S.P .; Dimitrios, V. Effect of C/N ratio and support material on heterotrophic denitrification of potable water in bio-filters using sugar as carbon source, International Biodeterioration & Biodegradation (2016) 62-73.

Galloway, J. N. Nitrogen cycles: past, present, and future. Biogeochemistr 70 (2004) 153-226.

Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences (USA) 106 (2009) 203-208.

Michelle L. McCrackin1 and James J. Elser. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes, Ecology 91(2) (2010) 528-539.

Ovez, B. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochemistry 41 (2006) 1289-1295.

Boudergues, R; Calvet, H . Note sur la digestiblité des coques d’arachides utilisées en alimentation animale ; Revue D’élevage et de Médecine Vétérinaire Des Pays Tropicaux 23 ; (2000).

Misra, R.V. ; Roy, R.N. ; Hiraoka, H. Méthodes de compostage au niveau de l’exploitation agricole. Organisation des Nations Unies pour l’Alimentation et l’Agriculture. Rome (2005).

Pattinson, S. N.; garcia-ruiz, R.; Whitton, B. A. Spatial and seasonal variation in denitrification in the Swale-Ouse system, a river continuum. Science of the Total Environment 210 (1998) 289-305.

Inwood, S.E.; Tank, J.L.; Bernot, M.J. Factors controlling sediment denitrification in Midwestern streams of varying land use, Microbial Ecology 53 (2007) 247– 258.

Salem, Z.; Lebik, H.; Cherafa, W.K.; Allia. K. Valorisation of olive pits using biological denitrification. Desalination 204 (2007) 72-78.

Filloux, A.; valkex, I. Biofilm set up and organization of bacterial community. Medicine Science Paris 19 (2003) 77-83.

Kawarai, T.; Furukawa, S.; Narisawa, N.; Hagiwara, C.; Ogihara, H.; Makari, Y. Biofilm formation by Escherichia coli in hypertonic sucrose media. Journal of Bioscience and Bioengineerin 107(6) (2009) 630-635.

Yang, X.; Grailer, J.J.; Rowland, I.J, Javadi, A.; Hurley, S.A.; Matson, VZ, Steeber, D.A; Gong, S. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano., 23(11).

Canter, L.W. Nitrates in Groundwater. Boca Raton: CRC Press (1997).


Refbacks

  • There are currently no refbacks.