Surface Modification of Olive Stone-based Activated Carbon for Nickel Ion removal from synthetic wastewater

M. Termoul, B. Bestani, N. Benderdouche, M.A. Chemrak, S. Attouti


Abstract: The aim of this work is to investigate nickel ion removal from its aqueous solutions by an olive stone-based activated carbon. Activated carbon surface properties modification was carried out nitric acid (4 N) as an agent for Ni(II) adsorption capacity improvement. The originally prepared and modified activated carbons were characterized by FT-IR spectrometry, X-ray diffractometry, Scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS), N2/77 K BET analysis, pHPZC and iodine number determination. Nickel ion adsorption capacity was enhanced by 3.6 times while the specific surface area increased by 24% due to chemical treatment. The effect of relevant parameters on Ni(II) uptake such as contact time, adsorbent dose, pH, kinetics was also examined. An activated carbon dose of 4 g.L-1and a contact time of 120 min and respective corresponding values of 8 g/L and 180 min for the treated and untreated activated carbons were required to reach equilibrium for a 100 mg.L-1initial solution concentration. The highest adsorption performance was achieved by the acid-modified activated carbon samples in the pH range of 5.5-6.5. Experimental data was correlated by non-linear Langmuir and Freundlich adsorption models. Langmuir isotherm provides a slightly better fit to the experimental data indicating homogeneous distribution of adsorbents active sites with monolayer adsorption. Three methods of error analysis of residual root mean square error (RMSE), chi-square error (χ2) and average percentage error (APE) were used for best fit-isotherm and kinetic models identification. Langmuir is more representative with high (R2) low RMSE and good χ². Second-order kinetics and intraparticular diffusion were found to describe Nickel adsorption of both investigated materials.

Full Text:



Stoeckli, H. F. Porosity in Carbons: Characterization and Applications; Patrick, J. W., Ed.; Edward Arnold: London, (1995).

Ranganathan, K. Adsorption of Hg(II) Ions from Aqueous Chloride Solutions Using Powdered Activated Carbons. Carbon 41 (5) (2003) 1087-1092.

Gupta, V. K.; Suhas, N. A., Agarwal, S., Chaudhary, M., & Tyagi, I.. Removal of Ni (II) Ions from Water Using Scrap Tire. J. Mol. Liq190 (2014) 215–222.

Cole, C. A. Hazardous and Industrial Waste Proceedings: 21st Mid-Atlantic Conference, 1 edition.; Long, D. A., Ed.; CRC Press: Lancaster, Pa., (1989).

Bowen, H. J. M. Environmental Chemistry of the Elements.; Academic Press., (1979).

Dean, J. G.; Bosqui, F. L.; Lanouette, K. H. Removing Heavy Metals from Waste Water. Environ. Sci. Technol 6 (1972) 518-522.

Brinckman, F. E.; Olson, G. J. Chemical Principles Underlying Bioleaching of Metals from Ores and Solid Wastes, and Bioaccumulation of Metals from Solutions. In Biotechnology and bioengineering symposium (1986) 35-44.

Cerjan-Stefanović, Š.; Kaštelan-Macan, M. Ion Exchange Separation Ag(I) from Waste Waters. Int. J. Environ. Anal. Chem 38 (1990) 323-328.

Tiwari, D. P.; Promod, K.; Mishra, A. K.; Singh, R. P.; SRIVASTAV, R. S. Removal of Toxic Metals from Electroplating Industries (Effect of PH on Removal by Adsorption). Indian J. Environ. Health 31 (1989) 120-124.

Shukla, N.; Pandey, G. S. Charred Waste of Oxalic Acid Plant as an Adsorbent of Toxic Ions and Dyes. Biol. Wastes 32 (1990) 145-148.

Nassar, M. M. The Kinetics of Basic Dye Removal Using Palm-Fruit Bunch. Adsorpt. Sci. Technol. 15 (1997) 609-617.

Nassar, M. M. Energy Consumption and Mass Transfer during Adsorption Using Gas and Mechanical Stirring Systems. Water Res. 32 (1998) 3071-3079.

Nassar, M. M. Intraparticle Diffusion of Basic Red and Basic Yellow Dyes on Palm Fruit Bunch. Water Sci. Technol. 40 (1999) 133.

Ho, Y. S.; McKay, G. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat. Water Res., 34 (2000) 735-742.

Yu, Q.; Matheickal, J. T.; Yin, P.; Kaewsarn, P. Heavy Metal Uptake Capacities of Common Marine Macro Algal Biomass. Water Res., 33 (1999) 1534-1537.

Nassar, M. M.; Magdy, Y. H. Removal of Different Basic Dyes from Aqueous Solutions by Adsorption on Palm-Fruit Bunch Particles. Chem. Eng. J., 66 (1997) 223-226.

Scott, J. A.; Palmer, S. J.; Sage, G. K. Metal Adsorption by Bacterial Capsular Polysaccharide Coatings. In Recent Developments in Ion Exchange; Springer (1987) 332-338.

Yong, P.; Macaskie, L. E. Effect of Substrate Concentration and Nitrate Inhibition on Product Release and Heavy Metal Removal by a Citrobacter Sp. Biotechnol. Bioeng., 55 (1997) 821-830.

Malamis, S.; Katsou, E. A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: Examination of Process Parameters, Kinetics and Isotherms. J. Hazard. Mater., 252 (2013) 428-461.

Gao, Y.; Yue, Q.; Gao, B.; Sun, Y.; Wang, W.; Li, Q.; Wang, Y. Preparation of High Surface Area-Activated Carbon from Lignin of Papermaking Black Liquor by KOH Activation for Ni(II) Adsorption. Chem. Eng. J., 217 (2013) 345-353.

Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Alvarez, P. M.; Alvim-Ferraz, M. C. M.; Dias, J. M. Activated Carbon Modifications to Enhance Its Water Treatment Applications. An Overview. J. Hazard. Mater., 187 (2011) 1-23.

El-Hendawy, A.-N. A. Influence of HNO3 Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon. Carbon 41 (2003) 713-722.

Macias-Garcia, A.; Diaz-Diez, M. A.; Cuerda-Correa, E. M.; Olivares-Marin, M.; Ganan-Gomez, J. Study of the Pore Size Distribution and Fractal Dimension of HNO3-Treated Activated Carbons. Appl. Surf. Sci., 252 (2006) 5972-5975.

Rambabu, N.; Azargohar, R.; Dalai, A. K.; Adjaye, J. Evaluation and Comparison of Enrichment Efficiency of Physical/Chemical Activations and Functionalized Activated Carbons Derived from Fluid Petroleum Coke for Environmental Applications. Fuel Process. Technol., 106 (2013) 501-510.

Termoul, M.; Bestani, B.; Benderdouche, N.; Belhakem, M.; Naffrechoux, E. Removal of Phenol and 4-Chlorophenol from Aqueous Solutions by Olive Stone-Based Activated Carbon. Adsorpt. Sci. Technol., 24 (2006) 375-388.

Chemrak, M. A.; Benderdouche, N.; Bestani, B.; Benallou, M. B.; Cagnon, B. Removal of Mercury from Natural Gas by a New Activated Adsorbent from Olive Stones. Can. J. Chem. Eng., 96 (2018) 241-249.

Önal, Y.; Akmil-Başar, C.; Sarıcı-Özdemir, Ç.; Erdoğan, S. Textural Development of Sugar Beet Bagasse Activated with ZnCl2. J. Hazard. Mater., 142 (2007) 138-143.

Kosmulski, M. The pH-Dependent Surface Charging and the Points of Zero Charge. J. Colloid Interface Sci., 253 (2002) 77-87.

Kosmulski, M. PH-Dependent Surface Charging and Points of Zero Charge. IV. Update and New Approach. J. Colloid Interface Sci., 337 (2009) 439-448.

Salima, A.; Benaouda, B.; Noureddine, B.; Duclaux, L. Application of Ulva Lactuca and Systoceira Stricta Algae-Based Activated Carbons to Hazardous Cationic Dyes Removal from Industrial Effluents. Water Res., 47 (2013) 3375-3388.

Kentner, E.; Armitage, D. B.; Zeitlin, H. A Rapid Dimethylglyoxime Method for the Determination of Nickel(II) in Sea Water. Anal. Chim. Acta, 45 (1969) 343-346.

Pally, D.; Bertagna, V.; Cagnon, B.; Alaaeddine, M.; Benoit, R.; Podvorica, F. I.; Vautrin-Ul, C. Phenylamide-Oxime and Phenylamide Nanolayer Covalently Grafted Carbon via Electroreduction of the Corresponding Diazonium Salts for Detection of Nickel Ions. J. Electroanal. Chem., 817 (2018) 101–110.

Benallou, M. B.; Douara, N.; Chemrak, M. A.; Mekibes, Z.; Benderdouche, N.; Bestani, B. Elimination of Malachite Green on Granular Activated Carbon Prepared from Olive Stones in Discontinuous and Continuous Modes. Algerian J. Environ. Sci. Technol.7 (2021) 1698-1706.

Benderdouche, N.; Bestani, B.; Hamzaoui, M. The Use of Linear and Nonlinear Methods for Adsorption Isotherm Optimization of Basic Green 4-Dye onto Sawdust-Based Activated Carbon. (2018).

Khelifi, A.; Almazán-Almazán, M. C.; Pérez-Mendoza, M.; Domingo-García, M.; López-Domingo, F. J.; Temdrara, L.; López-Garzón, F. J.; Addoun, A. Influence of Nitric Acid Concentration on the Characteristics of Active Carbons Obtained from a Mineral Coal. Fuel Process. Technol., 91 (2010) 1338-1344.

Huang, G.; Shi, J. X.; Langrish, T. A. G. Removal of Cr(VI) from Aqueous Solution Using Activated Carbon Modified with Nitric Acid. Chem. Eng. J., 152 (2009) 434-439.

Saka, C. BET, TG–DTG, FT-IR, SEM, Iodine Number Analysis and Preparation of Activated Carbon from Acorn Shell by Chemical Activation with ZnCl2. J. Anal. Appl. Pyrolysis, 95 (2012) 21-24.

Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A. Methylene Blue and Iodine Adsorption onto an Activated Desert Plant. Bioresour. Technol., 99 (2008) 8441-8444.

Lu, A.-H.; Zheng, J.-T. Study of Microstructure of High-Surface-Area Polyacrylonitrile Activated Carbon Fibers. J. Colloid Interface Sci., 236 (2001) 369-374.

Xiao, Y.; Long, C.; Zheng, M.-T.; Dong, H.-W.; Lei, B.-F.; Zhang, H.-R.; Liu, Y.-L. High-Capacity Porous Carbons Prepared by KOH Activation of Activated Carbon for Supercapacitors. Chin. Chem. Lett., 25 (2014) 865-868.

Mohan, D.; Sarswat, A.; Singh, V. K.; Alexandre-Franco, M.; Pittman, C. U. Development of Magnetic Activated Carbon from Almond Shells for Trinitrophenol Removal from Water. Chem. Eng. J., 172 (2011) 1111-1125.

Thakur, S.; Pandey, S.; Arotiba, O. A. Development of a Sodium Alginate-Based Organic/Inorganic Superabsorbent Composite Hydrogel for Adsorption of Methylene Blue. Carbohydr. Polym., 153 (2016) 34-46.

Aher, A.; Cai, Y.; Majumder, M.; Bhattacharyya, D. Synthesis of Graphene Oxide Membranes and Their Behavior in Water and Isopropanol. Carbon, 116 (2017) 145-153.

Hazourli, S.; Ziati, M.; Hazourli, A.; Cherifi, M. Valorisation d’un Résidu Naturel Ligno-Cellulosique En Charbon Actif-Exemple Des Noyaux de Dattes. Rev. Énerg. Renouvelables ICRESD, 7 (2007) 187-192.

Yang, W.; Liu, Y.; Wang, Q.; Pan, J. Removal of Elemental Mercury from Flue Gas Using Wheat Straw Chars Modified by Mn-Ce Mixed Oxides with Ultrasonic-Assisted Impregnation. Chem. Eng. J., 326 (2017) 169-181.

Guedidi, H.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of Ibuprofen from Aqueous Solution on Chemically Surface-Modified Activated Carbon Cloths. Arab. J. Chem., 10 (2017) S3584-S3594.

Liu, H.; Gao, Q.; Dai, P.; Zhang, J.; Zhang, C.; Bao, N. Preparation and Characterization of Activated Carbon from Lotus Stalk with Guanidine Phosphate Activation: Sorption of Cd(II). J. Anal. Appl. Pyrolysis, 102 (2013) 7-15.

de Celis, J.; Amadeo, N. E.; Cukierman, A. L. In Situ Modification of Activated Carbons Developed from a Native Invasive Wood on Removal of Trace Toxic Metals from Wastewater. J. Hazard. Mater., 161 (2009) 217-223.

Bedane, A. H.; Guo, T.; Eić, M.; Xiao, H. Adsorption of Volatile Organic Compounds on Peanut Shell Activated Carbon. Can. J. Chem. Eng., 97 (2019) 238-246.

Chen, L.-C.; Peng, P.-Y.; Lin, L.-F.; Yang, T. C. K.; Huang, C.-M. Facile Preparation of Nitrogen-Doped Activated Carbon for Carbon Dioxide Adsorption. Aerosol Air Qual. Res., 14 (2014) 916-927.

Ouldmoumna, A.; Reinert, L.; Benderdouche, N.; Bestani, B.; Duclaux, L. Characterization and Application of Three Novel Biosorbents “Eucalyptus Globulus, Cynara Cardunculus, and Prunus Cerasefera” to Dye Removal. Desalination Water Treat., 51 (2013) 3527-3538.

Socrates, G. Infrared and Raman Characteristic Group Frequencies : Tables and Charts ; John Wiley & Sons (2004).

Li, Z.; Ma, Z.; van der Kuijp, T. J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ., 468-469 (2014) 843-853.

Sambaza, S. S.; Masheane, M. L.; Malinga, S. P.; Nxumalo, E. N.; Mhlanga, S. D. Polyethyleneimine-Carbon Nanotube Polymeric Nanocomposite Adsorbents for the Removal of Cr6+ from Water. Phys. Chem. Earth Parts ABC, 100 (2017) 236-246.

Yao, S.; Zhang, J.; Shen, D.; Xiao, R.; Gu, S.; Zhao, M.; Liang, J. Removal of Pb(II) from Water by the Activated Carbon Modified by Nitric Acid under Microwave Heating. J. Colloid Interface Sci., 463 (2016) 118-127.

Rao, G. P.; Lu, C.; Su, F. Sorption of Divalent Metal Ions from Aqueous Solution by Carbon Nanotubes: A Review. Sep. Purif. Technol., 58 (2007) 224-231.

Abd El-Magied, M. O.; Elshehy, E. A.; Manaa, E.-S. A.; Tolba, A. A.; Atia, A. A. Kinetics and Thermodynamics Studies on the Recovery of Thorium Ions Using Amino Resins with Magnetic Properties. Ind. Eng. Chem. Res., 55 (2016) 11338-11345.

Edwin Vasu, A. Surface Modification of Activated Carbon for Enhancement of Nickel(II) Adsorption. E-J. Chem. 5, 5, e610503.

Rivera-Utrilla, J.; Ferro-Garcia, M. A. Study of Cobalt Adsorption from Aqueous Solution on Activated Carbons from Almond Shells. Carbon, 25 (1987) 645-652.

Teker, M.; Saltabaş, Ö.; İmamoğlu, M. Adsorption of Cobalt by Activated Carbon from the Rice Hulls. J. Environ. Sci. Health Part Environ. Sci. Eng. Toxicol., 32 (1997) 2077-2086.

Bjerrum, N. Studien Über Chromichlorid. III: Hydroxoaquochromichloride. Z. Für Phys. Chem., 73U (1910) 724-759.

Su, P.; Zhang, J.; Tang, J.; Zhang, C. Preparation of Nitric Acid Modified Powder Activated Carbon to Remove Trace Amount of Ni(II) in Aqueous Solution. Water Sci. Technol., 80 (2019) 86-97.

Seco, A.; Marzal, P.; Gabaldón, C.; Ferrer, J. Study of the Adsorption of Cd and Zn onto an Activated Carbon: Influence of pH, Cation Concentration, and Adsorbent Concentration. Sep. Sci. Technol., 34 (1999) 1577-1593.

Cho, E. H.; Pitt, C. H. The Adsoption of Gold and Silver Cyanide from Solution by Activated Charcoal, Gold, Silver, Uranium, and Coal Geology, Mining, Extraction and the Environment, The American Institute of Mining, Metallurigal and Petroleum Engineers. Inc N. Y. NY, (1983) 114-133.

Freundlich, H. M. F. Over the Adsorption in Solution. J Phys Chem, 57 (1906) 1100-1107.

Langmuir, I. The constitution and fundamental properties of solids and liquids. Part i. solids. J. Am. Chem. Soc., 38 (1916) 2221-2295.

Hamid Reza Ghaffari; Hasan Pasalari; Abdolhamid Tajvar; KavoosDindarloo; Ba; bak Goudarzi; Vali Alipour; Amin Ghanbarneajd. Linear and Nonlinear Two-Parameter Adsorption Isotherm Modeling : A Case-Study, (2017).

Benderdouche, N.; Bestani, B.; Benstaali, B.; Derriche, Z. Enhancement of the Adsorptive Properties of a Desert Salsola Vermiculata Species. Adsorpt. Sci. Technol., 21 (2003) 739-750.

Barrett, E. P.; Joyner, L. G.; Halenda, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc., 73 (1951) 373-380.

Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J., 70 (1998) 115-124.

Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem., 34 (1999) 451-465.

Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div., 89 (1963) 31-60.

Vázquez, G.; Mosquera, O.; Freire, M. S.; Antorrena, G.; González-Álvarez, J. Alkaline Pre-Treatment of Waste Chestnut Shell from a Food Industry to Enhance Cadmium, Copper, Lead and Zinc Ions Removal. Chem. Eng. J., 184 (2012) 147-155.

Vithanage, M.; Mayakaduwa, S. S.; Herath, I.; Ok, Y. S.; Mohan, D. Kinetics, Thermodynamics and Mechanistic Studies of Carbofuran Removal Using Biochars from Tea Waste and Rice Husks. Chemosphere, 150 (2016) 781-789.

El-Magied, A.; O, M. Sorption of Uranium Ions from Their Aqueous Solution by Resins Containing Nanomagnetite Particles. J. Eng., 2016 (2016) e7214348.

Mohan, D.; Singh, K. P.; Singh, V. K. Trivalent Chromium Removal from Wastewater Using Low Cost Activated Carbon Derived from Agricultural Waste Material and Activated Carbon Fabric Cloth. J. Hazard. Mater., 135 (2006) 280-295.

Carrott, P. J. M.; Carrott, M. R. Lignin–from Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol., 98 (2007) 2301-2312.


  • There are currently no refbacks.