Rapid detection by FTIR spectroscopy of the competition of Hg (II) and Pb (II) on the functional sites of humic acid.

M.C. Terkhi, M.R. Ghezzar, A. Addou


This work shows that infrared spectroscopy is an easy and fast analytical technique for monitoring the behavior of the humic acids Fluka (impure) and Leonardite (pure) in contact with binary solutions of mercury and lead. The results showed the high fixation capacity of humic acids for mercury compared to lead and the adsorption rate of Fluka is always higher (for Hg 99%; and lead 96%) than Leonardite (Hg 70%; lead 42%). The spectra showed a shift (30 cm-1) of the asymmetric stretching vibration band from the carboxylate function -COO- for the humic acids Fluka-binary solution interaction. In the case of mercury alone, the shift was of 40 cm-1and has decreased by 10 cm-1.  That is proves that the cationic exchange becomes more difficult. The spectra also showed the variation of the intensity of the C=O elongation vibration band of the carboxylic function -COOH up to 1610 cm-1 for the Leonardite humic acid-binary interaction. The high concentration of the binary solution did not result in the total disappearance of the C=O band as in the Leonardite humic acid-mercury alone interaction study. This proves that some carboxylic sites are not accessible to Hg2+ ions. These results were confirmed by monitoring the pH before and after ion exchange during the humic-binary acid (Hg-Pb) interaction. It appears that the -COONa or -COOCa to -COOM type transitions in Fluka humic acid were easy rather than the -COOH to -COOM type transitions in Leonardite humic acid.

Full Text:



Bradl, H. Heavy Metals in the Environment: Origin, Interaction and Remediation; Academic Press: London; 10, 6(2002) 11.

Figueredo, F.G.; Lima, L.F.; Morais-Braga, M.F.B.; Figueredo, J.G.; Pinto, N.B.; Matias, E.F.F.; Menezes, I.R.A.; Almeida, R.S.; Cunha, F.A.B.; Coutinho, H.D.M. Potential assessment cytoprotective against toxic effect of chloride of mercury and antioxidant Lygodium venustum sw (lygodiaceae). Revista Interfaces 39 (2016a) 44-49.

Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; Mcgrath, S.P. Soil contamination in China: current status and 16 mitigation strategies. Environmental Science and Technolology 49 (2015) 750-759. 17

Shixiang, W.; Yong, L.; Qin, F.; Anlan, Z.; Lu, F.; Yulan, M. Removal of Hg (II) from aqueous solution using sodium humate as heavy metal capturing agent. Water Science and Technolology 74 (2016) 2946-2957.

Zhang, Y.; Du, J.; Ding, X.; Zhang, F. Comparison study of sedimentary humic substances isolated from contrasting coastal marine environments by chemical and spectroscopic analysis. Environmental Earth Sciences 75 (2016) 378.

Gondar, D.; López, R.; Fiol, S.; Antelo, J.; Arce, F. Cadmium, lead, and copper binding to humic acid and 23 fulvic acid extracted from an ombrotrophic peat bog. Geoderma 135 (2006) 196-203.

Liu, A.; Gonzalez, R.D. Modeling Adsorption of Copper (II), Cadmium (II) and Lead(II) on Purified Humic Acid. Langmuir 16 (2000) 3902-3909. 26

Covelo, E.F.; Andrade, M.L.; Vega, F.A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. Journal of Colloid and Interface Science 280 (2004) 1-8.

Plaza, C.; Brunetti, G.; Senesi, N.; Polo, A. Molecular and Quantitative Analysis of Metal Ion Binding to Humic Acids from SewageSludge and Sludge-Amended Soils by Fluorescence Spectroscopy. Environmental Science and Technology 40 (2006) 917-923.

Janos, P.; Sypecka, J.; Mlckovska, P.; Kuran, P.; Pilarova, V. Removal of metal ions from aqueous solutions by sorption on to untreated low- rank coal (oxihumolite). Separation and Purification Technology 53 (2007) 322-329.

Kulikowska, D.; Gusiatin, Z.M.; Bulkowska, K.; Klik, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for dierent periods of time. Journal of Hazardous Materials 300(2015) 882-891.

Rong, Q.; Zhong, K.; Huang, H.; Li, C.; Zhang, C.; Nong, X. Humic Acid Reduces the Available Cadmium, Copper, Lead and Zinc in Soil and Their Uptake by Tobacco. Applied Sciences 10 (2020) 1077.

Terkhi, M.C.; Taleb, F.; Gossart, P.; Semmoud, A.; Addou, A. Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. Journal of Photochemistry and Photobiology A 198 (2008) 205-214.

Gossart, P.; Semmoud, A.; Ouddane, B.; Huvenne, J.P. Study of the interaction between humic acids and lead: exchange between Pb2+ and H+ under various chemical conditions followed by FTIR. Physycal and Chemical News 9 (2003) 101-108.

Santoso, U.T.; Santosa, S.J.; Siswanta, D.; Rusdiarso, B.; Shimazu, S. Characterization of sorbent produced through immobilization of humic acid on Chitosan using glutaraldehyde as cross-linking agent and Pb(II) ion as active site protector. Indonesian Journal of Chemistry 10 (2010) 301-309.

Shulten, H.R.; Shnitzer, M. A state of the art structural concept for humic substances. Natur Wissen schaften. 80 (1993) 29-30.

Sparks, D.L. Environmental soil chemistry, Academic Press, New York, 1995.

Hayes, M.H.B. Humic substances in soil, sediment and water. Wiley, New York, 1985.

Schnitzer, M.; Gupta, U.C. Determination of acidity in soil organic matter. Soil Science Society of America Journal 29 (1965) 274-277.

Cherifi-Naci, H.; Boughrara, S.; Louhab, K. Efficacité des argiles à piliers d’oxydes d’aluminium et de fer pour l’élimination du Cu (II) à partir des solutions aqueuses. Algerian Journal of Environmental Science and Technology 3 (2015) 74-82.

Djebri, N.; Boukhalfa, N.; Boutahala, M.; Chelali, N. Préparation des biomatériaux d’hydrogels à base d’argile et d’alginate (algues brunes): application environnementale. Algerian Journal of Environmental Science and Technology 3 (2017) 532-538.

Behilila, A,; Lahcenea, D.; Zahraouia, B.; Benmehdia, H.; Belhachemia, M.; Choukchou-Braham, A. Dégradation d’un colorant cationique par la photocatalyse solaire à travers une argile algérienne imprégnée avec TiO2. Algerian Journal of Environmental Science and Technologie 3 (2020) 1566-1574.

Nara, M.; Torii, H.; Tasumi, M. Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: An ab Initio. Molecular Orbital Study. Journal of Physical Chemistry 100 (1996) 19812-19817.

Toubal, S.; Elhaddad, Dj.; Bouchenak, O.; Yahiaoui, K.; Sadaoui, N.; Arab, K. L’importance des extraits d’Urtica dioica L. dans la lutte contre Culex pipiens (Linné, 1758). Algerian Journal of Environmental Science and Technology 5 (2019) 868-872.

Liu, Z.; Zhou, L.; Wei, P.; Zeng, K.; Wen, C.; Lan, H. Competitive adsorption of heavy metal ions on peat. Journal of China University of Mining and Technology 18 (2008) 255-260.

Bosire, G.O.; Kgarebe, B.V.; Ngila, J.C. Experimental and theoretical characterization of metal complexation with humic acid. Analytical Letters 49 (2016) 2365-2376.

Steelink, C. Implications of elemental characteristics of humic substances, In G. Aiken, D. McKnight, R.Wershaw and P. MacCarthy, (eds.), Humic Substances in Soil, Sediment and Water. Wiley Interscience, New York, 1985.

Qian, L.B.; Chen, B.L. Dual role of biochars as adsorbents for aluminium : the effect of oxygen containing organic components and the scattering of silicate particles. Environmental Science and Technology 47 (2013) 8759-8768.

Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97 (2003) 219-243.

Zeledon-Toruno, Z.; Lao-Luque, C.; Solé-Sardans, M. Nickel and copper removal from aqueous solution by an immature coal (leonardite): effect of pH, contact time and water hardness. Journal of Chemical Technology and Biotechnology 80 (2005) 649-656.

Peter, C.S.; Gary, D.R. Competitive metal binding to a silicate-immobilized humic material. Journal of Hazardous Materials 145 (2007) 203-209.

McKay, G.; Porter, J.F. Equilibrium parameters for the sorption of copper, cadmium, and zinc ions onto peat. Journal of Chemical Technology and Biotechnology 69 (1997) 309-320.

Allen, S.J.; Brown, P.A. Isotherm analyses for single component and multi-component metal sorption onto lignite. Journal of Chemical Technology and Biotechnology 62 (1995) 17-24.


  • There are currently no refbacks.