Electrochemical characterization of semiconductor photovoltaic silicon

N. Salhi, E. Salhi, M. Bounoughaz


The objective of this search is the use of the electrochemical techniques to verify the homogeneous of the photovoltaic silicon elaborated by electromagnetic brewing at 250 A. The used electrolytic medium are 3,5% NaCl and acidified 3,5% NaCl (pH 3). The results obtained from several techniques (Open circuit potential, Tafel curves, chronopotentiommetry and electrochemical impedance spectrometry), indicate the existence of a heterogeneousness structure in the silicon ingot. 

Full Text:



Tao, C.S.; Jiang, J.; Tao, M. Natural resource limitations to terawatt-scale solar cells. Solar Energy Materials and Solar Cells 95 (2011) 3176.

Shah, A.V.; Platz, R.; Keppner, Thin H. film silicon solar cells: a review and selected trends. Solar Energy Materials and Solar Cells 38 (1995) 501.

Elwell, D.; Feigelson, R.S. Electrodeposition of solar silicon. Solar Energy Materials 6 (1982) 123.

De Mattei, R.C.; Elwell, D.; Feigelson, R.S. Electrodeposition of silicon at temperatures above its melting point. Journal of the Electrochemical Society 128 (1981) 1712.

Olson, J.M.; Carleton, K.L. A semipermeable anode for silicon electrorefining. Journal of the Electrochemical Society 128 (1981) 2698.

Kliemt, K.; Krellner, C. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2. Journal of Crystal Growth, June 20( 2016).

Sharma, I.G.; Mukherjee,T.K. A study on purification of metallurgical grade silicon by molten salt electrorefining. Metallurgical and Materials Transactions B 17 (1986) 395.

Jacobson, A. C. Evaluation of global wind power. Geophysical research, vol. D12110 (2005) p. 110

ERGE T, S. F. Photovoltaic in buildings, a design handbook for architects and engineers», Paris, France: International energy agency(1996)

Bailly, L. Cellules photovoltaïques organiques souples à grande surface.Thèse de doctorat. Uuniversité BORDEAUX I. Septembre 2010.

Astier, S. Conversion photovoltaïque de la cellule aux systèmes, Techniques de l’ingénieur. D 3936 (2008).

Bard, A. J. Ed. Encyclopedia of Electrochemistry of the Elements. Dekker, M. 270 Madison Avenue NEW YORK NY 10016, Volume IX-A, 612 p, USA (1982)

Hine, F. ; Electrode Processes and Electrochemical Engineering (Réactions aux électrodes et Génie électrochimique). Plenum Press, 233 Spring Street NEW YORK NY 10013. USA (1985) 410 p.

Besson, J. - Précis de Thermodynamique & Cinétique électrochimiques. Ellipses-Edition Marketing. 75015 PARIS. S. (1984) 446 p

Bommersbach, P.; Alemany-Dumont, C.; Millet, J.P.; Normand, B. Hydrodynamic effect on the behaviour of a corrosion inhibitor film: Characterization by electrochemical impedance spectroscopy. Electrochimica Acta. 51, No.19 (2006) 4011-4018.

Macedo, M.C.S.S.; Margarit, I.C.P.; Fragata, F.L.; Jorcin, J.B. Contribution to a better understanding of different behaviour patterns observed with organic coatings evaluated by electrochemical impedance spectroscopy. Corroion. Sciences. 51(6)(2009) 1322 – 1327.

Gupta, G.K.; Garg, A.; Dixit, A. Electrical and impedance spectroscopy analysis of sol-gel derived spin coated Cu2ZnSnS4 solar cell. Journal of Applied Physics. 123 (2018) 013101

Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Sero, I.; Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics. 13 (2011) 9083–9118.

Shibayama, N.; Zhang, Y.; Satake, T.; Sugiyama, M. Modelling of an equivalent circuit for Cu 2 ZnSnS 4-and Cu 2 ZnSnSe 4 based thin film solar cells. Royal Society of Chemistry Advances. 7 (2017)25347–25352.


  • There are currently no refbacks.