Evaluation of Safety Instrumented System in a petroleum plant and its impact on the environment

S. Bouasla, E. Mechhoud, Y. Zennir, R. Bendib, M. Rodriguez

Abstract


The purpose of this work is to check the calculations to consolidate the safety instrumented system (SIS) in order to preserve the safety of the plant and the environment,and consider the consequences in case of failure. The application of our study will be focused ontheNaphta Stabilizer-B Reflux Drum in Skikda refinery using the combination of HAZOP-LOPA-Fault Tree methods. The aim of this paper is to verify that the intended safety integrity level of a safety instrumented system is achieved. Otherwise propose a solution to ameliorate the safety instrumented system to mitigate the studied scenario. In case of failure of the safety instumented system, severe damage to the installation and serious impact on the environment will be considered; the use of petri nets allows us to model the behavior of the system. So the objective of our work is to ensure that the appropriate and efficient safety system is installed.

Full Text:

PDF

References


Jafarinejad, S. Control and treatment of sulfur compounds specially sulfur oxides (SOx) emissions from the petroleum industry: a review.Chem. Inter2 (2016) 242–253.

Jafarinejad, S. Odours emission and control in the petroleum refinery: a review.Curr. Sci. Perspec2(2016) 78–82.

Jafarinejad, S. Petroleum Waste Treatment and Pollution Control.First edition, Elsevier (2016)378 pages.

Macini, P.; Mesini, E. The petroleum upstreamindustry: hydrocarbon exploration and production, in petroleum engineering-upstream. Encyclopedia of Life Suport Systems (EOLSS) (2011)76 pages.

Devold, H. Oil and gas production handbook, an introduction to oil and gas production, transport.Refining and petrochemical industry. Third edition. ABB Oil and Gas(2013) 162 pages.

IEC 31000 standard. Risk management – principles and guidelines. First edition(2009) 36 pages.

Bouasla, S.; Zennir,Y.; Mechhoud, E. Risk analysis using HAZOP-Fault Tree-Event Tree methodology. Algerian journal of signals and systems. vol. 5 (2)(2020) 98-105.

Leasure, B.; Kuck, D.; Gorlatch, S.;Cole, M.;Watson, G.;Darte, A.;Gärtner, K. Petri Nets. Encyclopedia of Parallel Computing(2011) 1525–1530.

Feng, L.;Obayashi, M.;Kuremoto, T.;Kobayashi, K. Construction and Application of Learning Petri Net.Manufacturing and Computer Science(2012) 143-176.

Dunjó, J.;Fthenakis, V.; Vílchez, J.; Arnaldos, J. Hazard and operability (HAZOP) analysis. A literature review. J. Hazard. Mater 173 (2010), 19–32.

Macdonald, D.;Mackay, S. Practical HAZOPs, Trips and alarms. IDC Technologies(2004) 345 pages.

Crawley, F.;Preston, M.;Tyler, B. HAZOP: Guide to best practice, Guidelines to best practice for the process and chemical industries. Institution of Chemical Engineers(2000) 128 pages.

Chhadra, S.;Chichra, H.;Kumar, J. HAZOP/HAZID for IOCL BOTTLING plant. PATTIKALAN (2014) 60 pages.

Lin, S.; Wang, Y.; Jia, L. System Reliability Assessment Based on Failure Propagation Processes.Complexity (2018) 1-19.

Sihombing, F.;Torbol, M. Parallel fault tree analysis for accurate reliability of complex systems. Structural Safety. vol. 72(2018) 41–53.

Giraud, L.;Galy, B. Fault tree analysis and risk mitigation strategies for mine hoist. Safety Science.vol. 110 (2018) 222–234.

Rajkumar, L.; Patil, B. an overview of fault tree analysis (FTA) method for reliability analysis. Journal of Engineering Research and Studies. vol. 4(2013) 06-08.

IEC 61025 standard. Fault tree analysis (FTA). Second edition (2006) 112 pages.

Goodman, G. An assessment of coal mine escapeway reliability using fault tree analysis. Mining Science and Technology 7(2) (1988) 205–15.

Vesely, W.; Goldberg, F.; Roberts, N.; Haasl, D. Fault Tree Handbook. Nuclear Regulatory Commission (1981) 209 pages.

Haasl, D. Advanced concepts in fault tree analysis In System Safety Symposium. Boeing Company (1965) 14 pages.

Hauptmanns, U. Fault tree analysis of a proposed ethylene vaporization unit. Industrial & Engineering Chemistry Fundamentals 19(3)(1980) 300-309.

Hauptmanns, U. Fault tree analysis for process industries engineering risk and hazard assessment. Engineering Risk & Hazard Assessment. vol. 1. Boca Raton. FL: CRC Press (1988) 21–59.

CCPS, Layer of protection analysis, simplified process assessment. Center for chemical process safety of the American institute for chemical Engineers(2001) 280 pages.

Ronald, J. Layer of Protection Analysis. Procedia Engineering 84(2014)12–22.

Guidelines for Initiating Events and Independent Protection Layers. Wiley(2014) 381 pages.

IEC 61511 standard. Functional safety. Safety instrumented systems for the process industry sector. Parts 1 to 3, International Electrotechnical Commission (2003) 56 pages.

Kim, M.; Lee, W.; Kim, S. SIL verification report.Skikda Refinery Rehabilitation & Adaptation Project(2010) 16 pages.

IEC 61508 standard, Functional safety of electrical /electronic/ programmable electronic safety-related systems. International Electrotechnical Commission (2010) 236 pages.

Omeiri, H.; Innal, F. Safety Integrity Evaluation of a Butane Tank Overpressure Evacuation System According to IEC 61508 Standard. Journal of FailureAnalysis and Prevention 15(6) (2015) 892–905.

Arendt, J.; Lorenzo, D. Evaluating Process Safety in the Chemical Industry. A user’s guide to quantitative risk analysis. CCPS (2000) 104 pages.

Luis, J.; Rodriguez, M. Abnormal Situation Diagnosis Using D-higraphs. ESCAPE20, Elsevier B.V (2010) 11 pages.

IEC 61882 standard, Hazard and operability studies (HAZOP studies). Application guide. Second edition (2016) 128 pages.

CCPS, Layer of protection analysis: a New PHA Tool after Hazop, before Fault Tree Analysis. International Conference and Workshop on Risk Analysis in ProcessSafety (1997) 17 pages.

Rajkumar, B.; Digvijay, A.; Pruthwiraj, B.; Kothavale, B. Fault Tree Analysis: A Case Study from Machine Tool Industry. VJTI (2018)5 pages.

Sam, M. Fault tree analysis. Lees’ loss prevention in the process industries, hazard identification. Assessment and control. Thirdedition.A&M University(2004) 3708 pages.

Debray, B.; Chaumette, S.; Descouriere, S.; Trommeter, V. methodes d’analyse des risques générés par une installation industrielle. INERIS-DRA-35 (2006) 140 pages.

Song, J.Operation and Maintenance Manual for CDU-10.Skikda Refinery (2012) 257 pages.

Kim, B. DCS Graphics Static Layout Printouts (SRR1).Skikda refinery(2011) 168 pages.

Nouger, N.;Verhaeghe, M. étude de dangers de la raffinerie de skikda, chapitre B1: distillation atmosphérique(2009) 182 pages.

GRIF-Workshop, Graphical interface for reliability forecasting software(2020)http://grif-workshop.com.

Majuno, S.; Shaakal, R. Safety integrity level (SIL) classification study report of crude distillation unit I&II (unit 10/11). Skikda refinery (2006) 161 pages.

Travaux du groupe d’échange « Fréquence des événements initiateurs d’accidents », Fréquence des événements initiateurs d’accidents et disponibilité des barrières de protection et de prévention. ICSI(2009) 31 pages.

ALOHA, Areal Locations of Hazardous Atmospheres. U.S. Environmental Protection Agency (EPA). National Oceanic and Atmospheric Administration (NOAA)(2006) 96 pages.


Refbacks

  • There are currently no refbacks.