Adsorption of acetic acid from aqueous solutions by using tea waste as low-cost biosorbent: Equilibrium, kinetic and thermodynamic studies

O. Khelifi, A. Djadallah, Kh. Khalili, F. Khanfoussi, H. Laksaci, M. Nacef, M.L. Chelaghmia, A.M. Affoune

Abstract


This study aims to evaluate the preparation of a low-cost biosorbent from tea wastes were for use as a natural carrier for the removal of acetic acid from aqueous solutions. In order to clarify the adsorption process, batch experiments were carried out to study operating parameters effect on the adsorption process such as: contact time (5-60 min); initial concentration of acetic acid (0.01-0.1 mol L-1) and temperature (15-35 °C). The experimental data were analyzed by Langmuir and Freundlich isotherm. The equilibrium is perfectly described by the Langmuir model (R2>0.99) with a maximum monolayer adsorption capacity of 20.16 mg g-1 and the calculated specific surface area is equal to 42.489 m2 g-1. Kinetic study shows that the pseudo-second order well fitted the kinetic data. Thermodynamic parameters indicate that the adsorption process is feasible, spontaneous and exothermic. The results of the present study show that tea waste can be advantageously used as a low cost biosorbent for the removal of an acid from aqueous solutions.

Full Text:

PDF

References


Mundhe, K.S. Adsorption Study of Acetic Acid using Low Cost Biosorbent, Int. J. Curr. Microbiol. App. Sci., 4(12) (2015) 66-72.

Sakr, F.; Sennaoui, A.; Elouardi, M.; Tamimi, M.; Assabbane, A. Adsorption study of Methylene Blue on biomaterial using cactus, J. Mater. Environ. Sci., 6(2) (2015), 397-406.

Huang, R.; Moreira, A.; Notarfonzo, R.; Xu, Y.F. Pervaporation separation of acetic acid-water mixtures using modified membranes .1. blended Polyacrylic-Acid (Paa)-Nylon 6 Membranes, J. Appl. Polym. Sci., 35(5) (1988) 1191-1200.

King, C.J. Acetic Acid Extraction. In: Lo TC, Baird, M. H. I., Hanson, C., editor. Handbook of Solvent Extraction: Wiley; 1983. p. 567-572.

Aziz, S.S.; Mushtaq, S.; Begum, N. Adsorption Studies of Acetic Acid Removal from Waste Water Using Seeds of Brassica Nigra. Int. Journal of Engineering Research and Application, 7(8) (2017) 01-03.

Güler, N. Removal of acetic acid from dilute aqueous solutions using zeolite 13X, J. Turkish Chem. Societ. B., 1(2) (2017) 159-190.

Khelifi, O.; Nacef, M.; Affoune, A.M. Nickel (II) Adsorption from aqueous solutions by physico-chemically modified sewage sludge, Iranian J. Chem. Chem. Eng., 37 (2018) 73-87.

Khelifi, O.; Nacef, M.; Affoune, A.M. Biosorption of Nickel(II) ions from aqueous solutions by using Chicken eggshells as low-cost biosorbent, Algerian J. of Environ. Sci. Techn., 2:1 (2016) 12-16.

Khelifi, O.; Mehrez, I.; Ben Salah, W.; Ben Salah, F.; Younsi, M.; Nacef, M.; Affoune, A.M. Etude de l’adsorption du Bleu de Methylene (BM) à partir des solutions aqueuses sur un biosorbant préparé a partir des noyaux de datte Algérienne, LARHYSS J., 4(28) (2016) 135-148.

Khelifi, O.; Mehrez, I. Equilibrium, kinetics and thermodynamics studies of Methylene blue adsorption from aqueous solutions by biosorbent derived from Algerian date stones. Journal of Water Sciences & Environment Technologies, 2(01) (2016) 32-38.

Khelifi, O.; Mehrez, I.; Younsi, M.; Nacef, M.; Affoune, A.M. Methyl orange adsorption on biosorbent derived from mango seed kernels. LARHYSS Journal, 36 (2018) 145-156.

Low, K.S.; Lee, C.K.; Wong, S.Y.; Tang, P.L. Metal adsorption enhancement of rice hull through chemical modification, Environmental Technology, 21 (2001) 1239-1244.

Meunier, N.; Laroulandie, J.; Blais, J.F.; Tyagi, R.D. Cocoa shells for heavy metal removal from acidic solutions. Bioressource Technology 90 (2003) 255-263.

Bayat, B. Comparative study of adsorption properties of Turkish fly ashes: The case of nickel(II), copper(II) and zinc(II), J. Hazard. Mater., 95 (2002) 251 -273.

Annadurai, A.; Juang, R.S.; Lee, D.J. Adsorption of heavy metals from water using banana and orange peels. Water Science & Technology 47 (2002) 185-190.

Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Equilibrium Modeling of Single and Binary Adsorption of Cadmium and Nickel onto Bagasse Fly Ash, Chem. Eng. J., 117 (2006) 79-91.

Krishnani, K.K.; Meng, X.; Christodoulatos, C.; Boddu, V.M. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk, J. Hazard. Mater., 153 (2008) 1222-1234.

Lansari, F.; Edjekouane, M.; Khelifi, O.; Boukheteche, I.; Laksaci, H. Elimination of methylene blue by low-cost biomaterial prepared from local natural residue, Algerian Journal of Renewable Energy and Sustainable Development, 2(1) 2020 60-66.

Gouli Bi, M.I.; Yapo, A.J.; Ello, A.S.; Diabaté, D.; Trokourey. A. Adsorption of Acetic and Benzoic Acids from Aqueous Solutions on Activated Carbon. J. Soc. Ouest-Afr. Chim., 26 (2008) 53-57.

Avom, J.; Ketcha Mbadcam, J.; Matip, M.R.L.; Germain, P. Adsorption isotherme de l’acide acétique par des charbons d’origine végétale. African Journal of Science and Technology, 2(2) (2001) 1-7.

Dina, D.J.D.; Ntieche, A.R.; Ndi, J.N.; Ketcha Mbadcam, J. Adsorption of Acetic acid onto Activated Carbons obtained from Maize cobs by Chemical Activation with Zinc chloride (ZnCl2). Research Journal of Chemical Sciences, 2(9) (2012) 42-49.

Yang, R.T. Zeolites and Molecular Sieves. Adsorbents: Fundamentals and Applications, John Wiley & Sons, Inc., (2003) 157-190.


Refbacks

  • There are currently no refbacks.