Transport Facilité du Phénol à travers une Membrane Liquide Supportée contenant l’extractant solvatant le Trioctylphosphine Oxyde (TOPO)

N. Taoualit, K. Boutemak, F. Kaddour-Cherif, F. Abbas, D.E. Hadj Boussaad


Abstract: The present study focuses on the removal of phenol (PhOH) present in aqueous solutions using a supported liquid membrane (SLM) composed of a thin crosslinked sheet of polydimethylsiloxane (PDMS) containing the carrier trioctylphosphine oxide (TOPO) diluted in octane. The transfer conditions of PhOH through the SLM were optimazed. The diffusion flux (J), the permeability (P) and the diffusion coefficient (Ddiff) of the complexed species were determined.

Speciation of PhOH species in the supported organic membrane phase (extractant) was also performed using derived theoretical equations to elucidate the stoichiometry and PhOH transport mechanism through the SLM. Thus, the optimal conditions of PhOH transport found are:  in the receiving solution, , . Thus, 90% of phenol is removed. For against, only about 16% of phenol was able to cross the SLM with a diffusion flux J of the order of  and a coefficient of diffusion corresponding to .

Résumé: La présente étude porte sur l'élimination du phénol (PhOH) présent dans les solutions aqueuses en utilisant une membrane liquide supportée (MLS) composée d'une fine feuille réticulée de polydiméthylsiloxane (PDMS) contenant l’extractant-transporteur l'oxyde de trioctylphosphine (TOPO) dilué dans l'octane. Les conditions de transfert des PhOH à travers la MLS ont été optimisés. Le flux de diffusion (J), la perméabilité (P) et le coefficient de diffusion (Ddiff) des espèces complexées ont été déterminés. La spéciation des espèces de PhOH dans la phase membranaire supportée a également été réalisée en s’appuyant sur les équations théoriques dérivées pour élucider la stœchiométrie et le mécanisme de transport des PhOH à travers la MLS. Ainsi, les conditions optimales de transport des PhOH trouvées sont : dans la solution réceptrice, . Ainsi,90% de phénol sont éliminés. Par contre, seuls environ 16% de phénol ont pu traverser la MLS avec un flux de diffusion  et un coefficient de diffusion

Full Text:



Kidak, R.; Ince, N. H. Catalysis of advanced oxidation reactions by ultrasound: A case study with phenol. Journal of Hazardous Materials 146 (3) (2007) 630-635.

Melero, J.A.; Calleja, G.; Martinez, F.; Molina, R.; Pariente, M. I. Nanocomposite Fe2O3/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chemical Engineering Journal 131 (2007) 245-256.

Balaji, S.; Chung, S. J.; Thiruvenkatachari, R.; Moon, I. S. Mediated electrochemical oxidation process: Electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant. Chemical Engineering Journal 126(1) (2007) 51-57.

Matta, R.; Hanna, K.; Chiron, S. Oxidation of phenol by green rust and hydrogen peroxide at neutral pH. Separation and Purification Technology 61(3) (2008) 442-446.

Moussavi, G.; Mahmoudi, M.; Barikbin, B. Biological removal of phenol from strong wastewaters using a novel MSBR. Water Research 43(5) (2009) 1295-1302.

Adak, A.; Pal, A. Removal of phenol from aquatic environment by SDS-modified alumina: Batch and fixed bed studies. Separation and Purification Technology 50 (2) (2006) 256-262.

Mukherjee, S.; Kumar, S.; Misra, M.; Fan, M. Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal 129 (1-3) (2007) 133-142.

Mohanty, K.; Das, D.; Biswas, M. N. Treatment of phenolic wastewater in a novel multi-stage external loop airlift reactor using activated carbon. Separation and Purification Technology 58(3) (2008) 311-319.

Lazarova, Z.; Boyadzhieva, S. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules. Chemical Engineering Journal 100 (2004) 129-138.

Zeng, G-M .; Xu, K.; Huang, J-H.; Li, X.; Fang, Y-Y.; Qu, Y-H. Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane. Journal of Membrane Science 310 (2008) 149-160.

Hao, X.; Pritzker, M.; Feng, X. Use of pervaporation for the separation of phenol from dilute aqueous solutions. Journal of Membrane Science 335 (2009) 96-102.

Juang, R-S.; Huang, W-C. Use of membrane contactors as two-phase bioreactors for the removal of phenol in saline and acidic solutions. Journal of Membrane Science 313 (2008) 207-216.

Taoualit, N.; Azzazi, F.Z.; Benkadi, N.E.; Hadj-Boussaad, D.E. Extraction and Transport of Humic Acid using Supported Liquid-Membrane Containing Trioctyl Phosphine Oxide (TOPO) as the Carrier. Acta Physica Polinica A 129 (2016) 115-121.

Yang, X.; Duan, H.; Shi, D.; Yang, R.; Wang, S.; Guo, H. Facilitated transport of phenol through supported liquid membrane containing bis (2-ethylhexyl) sulfoxide (BESO) as the carrier. Chemical Engineering and Processing: Process Intensification 93(2015) 79–86.

Taoualit, N.; Abidat, I.; Hadj-Boussaad, D.E. Separation of Copper and Zinc from aqueous solution using Liquid-Membrane-Gel (LMG) containing Trioctylphosphine Oxide TOPO as Carrier. International Journal of Computational and Experimental Science and Engineering (IJCESEN) 3 (2017) 1-6.

Haddoum, Z.; Maouche, O. Adsorption de phénol sur les mésoporeux LaNiO3, SBA-15. Mémoire de Master (2015) Bejaïa, Algérie.

Doan-Nguyen, V.V.T.; Caroll, P.J.; Murray, C.B. Structure determination and modeling of monoclinic trioctylphosphine oxide. Acta Crystallographica Section C71 (2015) 239-241.


  • There are currently no refbacks.