Enhancement of photocatalytic reduction of Cr(VI) using the hetero-system NiAl2O4/ZnO under visible light

R. Bouallouche, M. Kebir, N. Nasrallah, M. Hachemi, A. Amrane, M. Trari


Abstract: Hexavalent chromium Cr(VI) is well known to be a toxic and non-biodegradable contaminant and can cause significant environmental damage if it is not eliminate from wastewater. However, it can be reduced to Cr(III), which is less toxic by photocatalysis process using the heterosystem NiAl2O4/ZnO. NiAl2O4 prepared by nitrate method crystalize in a spinel structure and was characterized, by XRD, FTIR, and SEM techniques. NiAl2O4 acts as electrons pump and the electron transfer to chromate is mediated via ZnO. Under the optimized conditions, the percentage of Cr(VI) reduction was 62 % for 20 mg/L, NiAl2O4/ZnO ratio (1/1) at pH~3.7 and under visible light. An improvement up to 72% was obtained when the reaction occurs in a Rishton reactor with six bleds after 6 h illumination. It is therefore concluded that the Cr(VI) photocatalytic reduction followed a pseudo first order kinetic model, in agreement with the Langmuir–Hinshelwood mechanism. This work revealed that the NiAl2O4/ZnO heterosystem exhibits a better photocatalytic efficiency for the photoreduction of Cr(VI) mainly due to the good separation of electron-hole pairs (e-/h+) in this combination.

Full Text:



Susana Torres, L.; Maria de los Angeles, B.; Beatriz Rodríguez, L. Water accounts in decision-making processes of urban water management: Benefits, limitations and implications in a real implementation. Sustainable cities and society 50(2019) 101676.

Frank Spellman, R. Water & Wastewater Infrastructure: Energy Efficiency and Sustainability, CRC Press (2013) by Taylor and Francis group.

Marie, E.; Ludovic. Dumée, F.; Judy, L. Nano/microplastics in water and wastewater treatment processes-Origin, impact and potential solutions. Water Research (2019) 621-638.

Lee. S.Y.; Park, S.J. TiO2 photocatalyst for water treatment application. Journal of Industrial Engineering and Chemistry 19 (2013) 1761-1769.

Rahman, A.; Jayaganthan, R. Study of photocatalyst magnesium aluminate spinel nanoparticles. Journal of Nanostructure and Chemistry 5 (2015) 147-151.

Liang, R.; Jing, F., Shen, L.; Qin, N.; Wu, L. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Material 287 (2015) 364-372.

Long, Z.; Fenglian, F.; Bing, T. Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites. Chemical Engineering Journal 356 (2019) 151-160.

Ying, H.; Qiang, X.; Jie, T.; Xin, F.; Honghan, C. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Chemosphere 222(2019) 511-516.

Kebir, M.; Chabani, M.; Nasrallah, N.; Bensmaili, A.; Trari, M.; Coupling adsorption with photocatalysis process for the Cr(VI) removal. Desalination (270) 1-3, 1 (2011) 166-173.

Avner, V.; Rachel, C.; Jonathan, K.; Jennifer, H.; S, K. Andrew J, R. Laura S,, M. Rose B., D. Gary S, Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina. Environmental Science Technology Letter 312 (2016) 409-414.

Nasrallah, N.; Kebir, M.; Koudri, Z.; Trari, M. Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS. Journal of Hazardous Materials 185, 2-3, (2011) 1398-1404.

Yu Zhang Miao, L.; Jiacheng, L.; Yanyan, Y.; Xiang, L. Surface modified leaves with high efficiency for the removal of aqueous Cr(VI). Applied Surface Science 484 (2019) 189-196.

Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, Sh. Guangming Zeng, Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Applied Catalysis. B Environment 94 (2010) 142-149.

Sun, J.; Mao, J.-D.; Gong, H.; Lan, Y. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with -OH. Journal of Hazardous Materials 168 (2009) 1569-1574.

Wang, N.; Xu, Y.; Zhu, L.; Shen, X.; Tang, H. Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. Journal of Photochemistry and Photobiology. A: Chemistry 201 (2009) 121-127.

Wang, L.; Wang, N.; Zhu, L.; Yu, H.; Tang, H. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. Journal of Hazardous Materials 152 (2008) 93-99.

Xie, B.; Zhang, H.; Cai, P.; Qiu, R.; Xiong, Y. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 63 (2006) 956-963.

Alias, N.; Rosli, S. A.; Hussain, Z.; Kian, T. W.; Lockman, Z. Anodised porous Nb2O5 for photoreduction of Cr(VI). Materials Today: Proceedings, 17, Part 3(2019) 1033-1039.

Kebir, M.; Trari, M.; Maachi, R.; Nasrallah, N.; Bellal, B.; Amrane, A. Relevance of a hybrid process coupling adsorption and visible light photocatalysis involving a new hetero-system CuCo2O4/TiO2 for the removal of hexavalent chromium. Journal of Environmental Chemical Engineering 3, 1 (2015) 548-559.

Chakrabarti, S.; Chaudhuri, B.; Bhattacharjee, S.; Ray, A.K.; Dutta, B.K. Photoreduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chemical Engineering Journal 153 (2009) 86-93.

Sebai, I.; Salhi, N.; Rekhila, G.; Trari, M. Visible light induced H2 evolution on the spinel NiAl2O4 prepared by nitrate route. International Journal of hydrogen energy 42 (2017) 26652-26658.

Kabra, K.; Chaudhary, R.; Sawh ney R, L. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): speciation modeling of metal-citric acid complexes. Journal of Hazardous Materials 155(2008) 424-432.

Kalai Selvan, R.; Augustin, C.O.; Sanjeeviraja, C.; Pol, V.G.; Gedanken, A. Optimization of sintering on the structural, electrical and dielectric properties of SnO2 coated CuFe2O4 nanoparticles. Materials Chemistry and Phyics 99 (2006)109-116.

Kezzim, A.; Nasrallah, N.; Abdi, A.; Trari, M. Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Conversion and Management 52 (2011) 2800-2806.

Xiaoxiang, X.; Azad, Abul K.; Irvine, J.T.S. Photocatalytic H2 generation from spinels ZnFe2O4, ZnFeGaO4 and ZnGa2O4. Catalysis Today 199 (2013) 22-26.

Ragupathi, C.; Judith Vijaya, J.; John Kennedy, L. Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method. Journal of Saudi Chemical Society 21 (2014) S231-S239.

Elakkiyaa, V.; Yash, A.; Shanmugam, S. Photocatalytic activity of divalent ion (copper, zinc and magnesium) doped NiAl2O4. Solid States Sciences 82 (2018) 92-98.

Lahmar, H.; Kebir, M.; Nasrallah, N.; Trari, M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuCr2O4/ZnO. Journal of Molecular Catalysis. A: Chemical (2012) 74-79.

Derbal, A.; Omeiri, S.; Bouguelia, A.; Trari, M.; Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution.

International Journal of Hydrogen Energy 33, 16 (2008) 4274-4282.

Elena Adin, R.; Adina Roxana, P.; Nicoleta Liliana, O.; Cosmina Andreea, L.; Daniela, C.; Maria, M.; Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Materials Science in Semiconductor Processing journal 57 (2017) 1-11.

Brahimi, R.; Bessekhouad, Y.; Nasrallah, N.; Trari, M. Visible light CrO42- reduction using the new CuAlO2/CdS hetero-system. Journal of Hazardous Materials 219-220 (2012) 19-25.

Chabani, M.; Amrane, A.; Bensmaili, A. Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400. Journal of Hazardous Materials 165 (2009) 27-33.

Peng, S.; Jun, Z.; Wenxiu, L.; Qi, W.; Wenbin, C. Modification to L-H Kinetics Model and Its Application in the Investigation on Photodegradation of Gaseous Benzene by Nitrogen-Doped TiO2.Catalysts (2018) 8(8) 326.


  • There are currently no refbacks.