Adsorption kinetics modelling of methylene blue solution by activated carbon using Peleg’s equation

N. Bourfis, F. Benaissa, S. Benamara, H. Gougam, K. Louhab

Abstract


Abstract: The  aim of this study is to envisage the possibility of modelling the adsorption kinetics of methylene blue (MB) by activated carbon using the Peleg’s model. Equation often used to describe the sorption and absorption kinetics of water by the material. The study of equilibrium adsorption was also envisaged in this study and the isotherms of Langmuir and Freundlich were tested. The activated carbon was prepared from almond shells bitter, fruit of plants growing in parts of Algeria, especially in the Setif region. Statistical analyses, have proved that the adsorption kinetics of MB by activated carbon is perfectly (R² = 0.9999) described by the Peleg model. On another hand, the study showed that, compared to the Langmuir model, Freundlich model is most appropriate to describe the equilibrium adsorption.

Full Text:

PDF

References


Ould-Idriss, A.; Stitou, M.; Cuerda-Correa, E.M.; Fernández-González, C.; Macías-García, A.; Alexandre-Franco, M.F.; Gómez-Serrano, V. Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Processing Technology 92 (2011) 261–265.

Rivera-Utrilla, J.; Sanchez-Polo, M.; Gomez-Serrano, V.; Alvarez, P.M.; Alvim-Ferraz, M.C.M.; Dias, J.M. Activated carbon modifications to enhance its water treatment applications. Journal of hazardous materials 187 (2011) 1–23.

Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials, Advanced Materials 18 (2006) 2073–2094.

Reimerink, W. M. T. M.; The use of activated carbon as catalyst and catalyst carrier inindustrial applications. Studies in Surface Science and Catalysis A120 (1999) 751–769.

Dabrowski, A.; Adsorption from theory to practice. Advances in Colloid and Interface Science 93 (2001) 135–224.

Prakash Kumar, B.G.; Shivakamy, K.; Miranda, L. R.; Velan, M. Preparation of steam activated carbon from rubberwood sawdust (Heveabrasiliensis) and its adsorption kinetics. Journal of hazardous materials B136 (2006) 922–929.

Chen, J.P.; Lin, M. Surface charge and metal ion adsorption on an H-type activated carbon: experimental observation and modelling simulation by the surface complex formation approach. Carbon 39 (2001) 1491–1504.

El Qada, E. N.;. Allen, S. J; Walker, G. M. Adsorption of basic dyes from aqueous solution onto activated carbons. Chemical Engineering Journal 135 (2008) 174–184.

Hong, S.; Wen, C.; He, J.; Gan, F.; Ho, Y.S. Adsorption thermodynamics of methylene blue onto bentonite. Journal of hazardous materials 167 (2009) 630–633.

Demirbas, E.; Dizge, N.; Sulak, M.T.; Kobya, M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal 148 (2009) 480–487.

Demirbas, E.; Kobya, M.; Konukman, A.E.S. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of hazardous materials 154 (2008) 787–794.

Langmuir, I. Adsorption of gases on plain surfaces of glass mica platinum. Journal of the American Chemical Society 40 (1918) 1361–1403.

Freundlich H.M.F. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie A57 (1906) 385–470.

Lagergren S. About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Handl 24 (1898) 1–6.

McKay, Y. S. Ho, G. Pseudo-second order model for sorption processes. Process Biochemistry 34 (1999) 451–465.

Chien, S. H.; Clayton, W. R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal 44 (1980) 265–268.

Urano, K.; Tachikawa, H. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. II. Adsorption rates and breakthrough curves. Industrial & Engineering Chemistry Research 30 (1991) 1897–1899.

Peleg, M. An empirical model for the description of moisture sorption curves. Journal of Food Science 53 (1988) 1216–1219.

Peng, G.; Chen, X.; Jiang, W.; Wu, X. Modeling of water sorption isotherm for corn starch. Journal of Food Engineering 80 (2007) 562–567.

Turhan, M.; Sayar, S.; Gunasekaran, S. Application of Peleg model to study water absorption in chickpea during soaking. Journal of Food Engineering 53 (2002) 153–159.

Díıaz, G. R.; Martínez-Monzó, J.; Fito, P.; Chiralt, A. Modelling of dehydration-rehydration of orange slices in combined microwaveyair drying. Innovative Food Science and Emerging Technologies 4 (2003) 203–209.

Schmidt, F.C.; Carciofi, B. A. M.; Laurindo, J. B. Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering 91 (2009) 553–559.

Bahloul, N.; Boudhrioua, N.; Kechaou, N. Moisture desorption–adsorption isotherms and isostericheats of

sorption of Tunisian olive leaves (Oleaeuropaea L.). Industrial Crops and Products 28 (2008) 162–176.

Corzo, O.; Bracho, N. Application of Peleg model to study mass transfer during osmotic dehydration of sardine sheets. Journal of Food Engineering 75 (2006) 535–541.

Jokić, S.; Velić, D.; Bilić, M.; BuCić-koJić, A.; Planinić M.; Tomas S. Modelling of the process of solid-liquid extraction of total polyphenols soybeans. Czech Journal of Food Sciences 28 (3) (2010) 206-212.

Boussetta, N.; Lanoisellé, J. L.; Bedel-Cloutour, C.; Vorobiev, E. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. Journal of Food Engineering 95 (2009) 192–198.

Soleimani, M.; Kaghazchi, T. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones–An agricultural waste. Bioresource Technology 99 (2008) 5374–5383.

Cimino, G.; Cappello, R.M.; Caristi, C.; Toscano, G. Characterization of carbons from olive cake by sorption of wastewater pollutants. Chemosphere 61 (2005) 947–955.

Akkaya, G.; Özer, A. Biosorption of Acid Red 274 (AR 274) on Dicranellavaria: Determination of equilibrium and kinetic model parameters. Process Biochemistry 40 (2005) 3559–3568.

Deng, Y.; Zhao, Y. Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering 85 (2008) 84–93.

Dadali, G.; Demirhan, E.; Özbek, B. Effect of drying conditions on rehydration kinetics of microwave dried spinach. Food and Bioproducts Processing 86 (2008) 235–241.

Moreira, R.; Chenlo, F.; Chaguri, L.; Fernandes, C. Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. Journal of Food Engineering 86 (2008) 584-594.

Yildirim, A.; Öner, M. D.; Bayram, M. Modeling of water absorption of ultrasound applied chickpeas (CicerarietinumL.) using Peleg’s equation. Journal of Agricultural Science 16 (2011) 278-286.

Moreira, R.; Chenlo, F.; Torres, M.D.; Vázquez, G. Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT 40 (2007). 1507–1514.

García-Pascual, P.; Sanjuán, N.; Melis, R.; Mulet, A. Morchellaesculenta (morel) rehydration process modeling. Journal of Food Engineering 72 (2006) 346–353.

Maskan, M. Drying shrinkage and rehydration characteristics of kiwifruits during microwave drying. Journal of Food Engineering 48 (2001) 177-182.

Salimi Hizaji, A.; Maghsoudlou, Y.; Jafari, S. M. Application of Peleg model to study effect of water temperature and storage time on rehydration kinetics of air dried potato cubes. Latin American Applied Research 40 (2010) 131-136.

Lopez, A.; Pique, M.T.; Clop, M.; Tasias, J.A.; Romero, J. Boatella, J. Garcia, The hygroscopic behaviour of the hazelnut. Journal of Food Engineering 25 (1995)197–208.

Hameed, B.H.; Chin, L.H.; Rengaraj, S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 225 (2008) 185–198.

Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments 75 (2007) 143-149.

Allen, S.J.; Gan, Q.; Matthews, R.; Johnson, P. A. Kinetic modelling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science 286 (2005) 101–109.

Uçar, B.; Güvenç, A.; Ülkü, M. Use of Aluminium hydroxide sludge as adsorbents for the removal of reactive dyes: equilibrium, thermodynamic, and kinetic studies. Hydrology: Current Research 2 (2) (2011) 1-8.

Alhamed, Y. A. Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones. Journal of hazardous materials 170 (2009) 763–770.

Estevinho, B.N.; Ratola, N.; Alves, A.; Santos, L. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. Journal of hazardous materials B137 (2006) 1175–1181.

Cunningham, S.E.; McMinn, W.A.M.; Magee, T.R.A.; Richardson, P.S. Modelling water absorption of pasta during soaking. Journal of Food Engineering 82 (2007) 600–607.

Kaptso, K.G.; Njintang, Y.N.; Komnek, A.E.; Hounhouigan, J.; Scher, J.; Mbofung, C.M.F. Physical properties and rehydration kinetics of two varieties of cowpea (Vignaunguiculata) and bambara groundnuts (Voandzeiasubterranea) seeds. Journal of Food Engineering. 86 (2008) 91–99.

García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Rehydration of air-dried Shiitake mushroom (Lentinusedodes) caps: Comparison of conventional and vacuum water immersion processes. LWT - Food Science and Technology 44 (2011) 480-488.

Zura, L.; Uribe, E.; Lemus-Mondaca, R.; Saavedra-Torrico, J.; Vega-Gálvez, A.; Di Scala, K. Rehydration capacity of chilean papaya (Vasconcellea pubescens): Effect of process temperature on kinetic parameters and functional properties. Food and Bioprocess Technology 6 (2013) 844-850.


Refbacks

  • There are currently no refbacks.