Modeling and characterization of malachite green adsorption onto date palm petioles

S. Bendebane, F. Bendebane, H. Bendebane, F. Ismail


To achieve the elimination of malachite green from aqueous solution by using date palm petioles, three factors were been varied: the initial concentration of dye, the mass of adsorbent and the stirring speed.

The optimization of these factors gave us an almost elimination of dye (Yexp.= 99.40%) under the following optimal conditions:  the initial concentration of Malachite green [MG]0 = 30ppm ; the mass of adsorbent mads = 0.26g and the stirring speed SS = 199rpm. 

Full Text:



Khattri, S.D.; Singh, M.K. Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials 167 (2009)1089-1094.

Nethaji, S.; Sivasamy, A.; Thennarasu, G. Saravanan, S.Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass, Journal of Hazardous Materials, 181 (2010) 271-280.

Garg, V.K. Kumar, R.; Gupta, R.; Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes and Pigments 62 (2004) 1–10.

Garg, V.K.; Gupta, R.; Yadav, A.B.; Kumar, .R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology 89 (2) (2003) 121.

Azhar, S.S.; Liew, A.G.; Suhardy, D.; Hafiz, K.F.; Hatim, M.D.I.; Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Journal of Applied. Sciences 2 (11) (2005) 1499-1503.

Hamdaoui, O.; Saoudi, F. ; Chiha, M. ; Naffrechoux, E. Sorption of malachite green by a novel sorbent, dead leaves of plane tree : Equilibrium and kinetic modeling. Chemical Engineering Journal 143 (2008) 73–84.

Srivastava, A. ; Sinha, R. ; Roy, D. ; Toxicological effects of malachite green. Aquatic Toxicology 66 (2004) 319–329.

Hameeda, B.H.; El-Khaiary, M.I.; Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials. 154 (2008) 237–244.

Behnajady, M.; Modirshahla, N.; Shokri, M.; and Vahid, B. Effect of operational parameters on degradation of malachite green by ultrasonic irradiation. Ultrason. Sonochem 15 (2008) 1009–1014.

Pérez-Estrada, L.A.; Agüera, A.; Hernando, M.D.; Malato, S.; and Fernández-Alba, A.R. Photodegradation of malachite green under natural sunlight irradiation: Kinetic and toxicity of the transformation products. Chemosphere. 70 (2008) 2068–2075.

Jyoti, V.T.; Cakraborty, M.; Murthy, Z.V.P. Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Polish journal of chemical Technology 14(2012) 2, 16-21. 10.2478/v10026-012-0065-6.

Nogueira, R.F.P.; Silva, M.R.A.; Trov´o, A.G. Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds, Solar Energy 79 (2005) 384–392.

13. Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L. UV light induced photodegradation of malachite green on TiO2 nanoparticles. Journal of Hazardous Materials, 141(2007) 520-528.

Paninutti, L.; Mouso, N.; Forchiassin, F. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus. Enzyme and Microbial Technology 39(2006) 848–853.

Sambasivam, S.; Joseph, D.P.; Reddy, D.R.; Reddy, B.K.; Jayasankar, C.K. Synthesis and characterization of thiophenol passivated Fe doped ZnS nanoparticles. Materials Science and Engineering : B 150(2008) 125–129.

N. Daneshwar, M.; Ayazloo, A.R.; Khataee, Pourhassan, M. Biological decolorization of dye solution containing malachite green by microalgae cosmarium sp. Bioresource Technology 98, (2007) 1176–1182.

Guechi, E.K.; Hamdaoui, O.; Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method. Arabian Journal of Chemistry. 9(2016) S416–S424.

Sharma, N.; Tiwari, D.P.; Singh, S. K. The Efficiency Appraisal for Removal of Malachite Green by Potato peel and Neem Bark: Isotherm and Kinetic Studies. International Journal of Chemical and Environmental Engineering 5 (2014) 83-88.

Sartape A.S.; Mandhare, A.M.; Jadhav, V.V. ; Raut, P.D. ; Anuse, M.A. ; Kolekar, S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry 10(2017) S3229–S3238.

Tanweer, A.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Nasir M.; Ibrahim, M. The use of date palm as a potential adsorbent for wastewater treatment: a review, Environmental Science and Pollution research 19(2012) 1464–1484.

Jibril, B.; Houache, O.; Al-Maamari, R.; Al-Rashidi, B. Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical Applied Pyrolysis 83(2008):151–156. doi:10.1016/j.jaap.2008.07.003.

Girgis, B.S.; El-Hendawy, A-NA. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials 52 (2002) 105–117.

Haimour, NM.; Emeish, S. Utilization of date stones for production of activated carbon using phosphoric acid. Waste Management 26 (2006) 651–660.

Reddy, K.S.K.; Shoaibi, A. Al.; Srinivasakannan, C. Activated carbon from date palm seed: process optimization using response surface methodology. Waste Biomass Valorization 3 (2012) 2 149–156. DOI :10.1007/s12649-011-9104-4


  • There are currently no refbacks.