Modeling and characterization of malachite green adsorption onto date palm petioles

S. Bendebane, F. Bendebane, H. Bendebane, F. Ismail


Abstract:To achieve the elimination of malachite green from aqueous solution by using date palm petioles, three factors were been varied: the initial concentration of dye, the mass of adsorbent and the stirring speed.

The optimization of these factors gave us an almost elimination of dye (Yexp.= 99.40%) under the following optimal conditions:  the initial concentration of Malachite green [MG]0 = 30ppm ; the mass of adsorbent mads = 0.26g and the stirring speed SS = 199rpm. 

Full Text:



Khattri, S.D.; Singh, M.K. Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials 167 (2009)1089-1094.

Nethaji, S.; Sivasamy, A.; Thennarasu, G. Saravanan, S.Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass, Journal of Hazardous Materials, 181 (2010) 271-280.

Garg, V.K. Kumar, R.; Gupta, R.; Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes and Pigments 62 (2004) 1–10.

Garg, V.K.; Gupta, R.; Yadav, A.B.; Kumar, .R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology 89 (2) (2003) 121.

Azhar, S.S.; Liew, A.G.; Suhardy, D.; Hafiz, K.F.; Hatim, M.D.I.; Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Journal of Applied. Sciences 2 (11) (2005) 1499-1503.

Hamdaoui, O.; Saoudi, F. ; Chiha, M. ; Naffrechoux, E. Sorption of malachite green by a novel sorbent, dead leaves of plane tree : Equilibrium and kinetic modeling. Chemical Engineering Journal 143 (2008) 73–84.

Srivastava, A. ; Sinha, R. ; Roy, D. ; Toxicological effects of malachite green. Aquatic Toxicology 66 (2004) 319–329.

Hameeda, B.H.; El-Khaiary, M.I.; Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials. 154 (2008) 237–244.

Behnajady, M.; Modirshahla, N.; Shokri, M.; and Vahid, B. Effect of operational parameters on degradation of malachite green by ultrasonic irradiation. Ultrason. Sonochem 15 (2008) 1009–1014.

Pérez-Estrada, L.A.; Agüera, A.; Hernando, M.D.; Malato, S.; and Fernández-Alba, A.R. Photodegradation of malachite green under natural sunlight irradiation: Kinetic and toxicity of the transformation products. Chemosphere. 70 (2008) 2068–2075.

Jyoti, V.T.; Cakraborty, M.; Murthy, Z.V.P. Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Polish journal of chemical Technology 14(2012) 2, 16-21. 10.2478/v10026-012-0065-6.

Nogueira, R.F.P.; Silva, M.R.A.; Trov´o, A.G. Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds, Solar Energy 79 (2005) 384–392.

13. Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L. UV light induced photodegradation of malachite green on TiO2 nanoparticles. Journal of Hazardous Materials, 141(2007) 520-528.

Paninutti, L.; Mouso, N.; Forchiassin, F. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus. Enzyme and Microbial Technology 39(2006) 848–853.

Sambasivam, S.; Joseph, D.P.; Reddy, D.R.; Reddy, B.K.; Jayasankar, C.K. Synthesis and characterization of thiophenol passivated Fe doped ZnS nanoparticles. Materials Science and Engineering : B 150(2008) 125–129.

N. Daneshwar, M.; Ayazloo, A.R.; Khataee, Pourhassan, M. Biological decolorization of dye solution containing malachite green by microalgae cosmarium sp. Bioresource Technology 98, (2007) 1176–1182.

Guechi, E.K.; Hamdaoui, O.; Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method. Arabian Journal of Chemistry. 9(2016) S416–S424.

Sharma, N.; Tiwari, D.P.; Singh, S. K. The Efficiency Appraisal for Removal of Malachite Green by Potato peel and Neem Bark: Isotherm and Kinetic Studies. International Journal of Chemical and Environmental Engineering 5 (2014) 83-88.

Sartape A.S.; Mandhare, A.M.; Jadhav, V.V. ; Raut, P.D. ; Anuse, M.A. ; Kolekar, S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry 10(2017) S3229–S3238.

Tanweer, A.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Nasir M.; Ibrahim, M. The use of date palm as a potential adsorbent for wastewater treatment: a review, Environmental Science and Pollution research 19(2012) 1464–1484.

Jibril, B.; Houache, O.; Al-Maamari, R.; Al-Rashidi, B. Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical Applied Pyrolysis 83(2008):151–156. doi:10.1016/j.jaap.2008.07.003.

Girgis, B.S.; El-Hendawy, A-NA. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials 52 (2002) 105–117.

Haimour, NM.; Emeish, S. Utilization of date stones for production of activated carbon using phosphoric acid. Waste Management 26 (2006) 651–660.

Reddy, K.S.K.; Shoaibi, A. Al.; Srinivasakannan, C. Activated carbon from date palm seed: process optimization using response surface methodology. Waste Biomass Valorization 3 (2012) 2 149–156. DOI :10.1007/s12649-011-9104-4


  • There are currently no refbacks.