Effect of using spent coffee grounds wastes as aggregates on physical and thermal properties of sand concrete

M. Guendouz, Dj. Boukhelkhal, Z. Triki, A. Mechantel, T. Boukerma

Abstract


Abstract: Coffee is one of the most popular and consumed beverages worldwide; as its consumption increases, the coffee waste increases and will become a serious environmental problem. This paper presents a feasibility study of manufacturing sand concrete by introducing recycled spent coffee grounds (SCG) as fine aggregate. The sand is substituted in its volume by SCG at percentages of 0%, 5%, 10%, 15% and 20%. The effect of SCG waste on workability, porosity and thermal properties of the sand concretes was studied. The experimental results show that the use of SCG as fine aggregate to replace partially the sand, contributes to reducing the workability of the SCG based sand concretes. However, the thermal properties are improved with the increasing rate of SCG, which could allow using SGC based concrete in various types of structural components with interesting insulating properties. 


Full Text:

PDF

References


Allouhi, Y.; El Fouih, T.; Kousksou, A.; Jamil, Y.; Zeraouli, Y.; Mourad. Energy consumption and efficiency in buildings: current status and future trends. J. Clean. Prod. 109 (2015) 118-130.

Hoxha, E.; Habert, G.; Lasvaux, S.; Chevalier, R. ; Le Roy, R. Influence of construction material uncertainties on residential building LCA reliability J. Clean. Prod. 144 (2017) 33-47.

Zhou, Z.; Wang, C.; Sun, X.; Gao, F.; Feng, W.; Zillante, G. Heating energy saving potential from building envelope design and operation optimization in residential buildings: a case study in northern China. J.Clean. Prod. 174 (2018) 413-423.

Boukhelkhal, Dj.; Guendouz, M.; Bourdot, A.; Cheriet, H.; Messaoudi, K. Elaboration of bio-based building materials made from recycled olive core. MRS Energ. &Sustb. 8 (2021) 98–109.

Akatos, A.; Kalmar, F. Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Mater. Str. 46 (7) (2013) 1101–1105.

Badescu, V.; Sicre, B. Renewable energy for passive house heating Part I. Ener. Build. 35 (2003) 1077–1084.

Dif F., Douara T. H., Zaitri R., Mouli M. Effects of combined natural volcanic powders on the thermo-physical and mechanical properties of structural eco-concrete, Journal of Building Engineering, 32 (2020) 101835, https://doi.org/10.1016/j.jobe.2020.101835.

Sulaiman Nayef Ahmed, Nadhim Hamah Sor, Mohammed Akram Ahmed, Shaker M.A. Qaidi, Thermal conductivity and hardened behavior of eco-friendly concrete incorporating waste polypropylene as fine aggregate, Materials Today: Proceedings,Volume 57, Part 2, 2022, Pages 818-823, https://doi.org/10.1016/j.matpr.2022.02.417.

Ammari M. S., Bederina M., Belhadj B., Quéneudec M. Effect of barley straw treatments on desiccation shrinkage and thermal properties of lightweight sand concrete, Algerian J. Env. Sc. Technology. 7 (2021) 2037–2044.

Nacer Akkouri, Oumaima Bourzik, Khadija Baba, Abderahman Nounah, Experimental study of the thermal and mechanical properties of concrete incorporating recycled polyethylene, Materials Today: Proceedings, 2022, https://doi.org/10.1016/j.matpr.2022.03.293.

M. Omrane, M. Rabehi, Effect of natural pozzolan and recycled concrete aggregates on thermal and physico-mechanical characteristics of self-compacting concrete, Construct. Build. Mater. 247 (2020) 118576, https://doiorg.sndl1.arn.dz/10.1016/j.conbuildmat.2020.118576.

Guendouz, M.; Boukhelkhal, Dj. Properties of fowable sand concrete containing ceramic wastes. J. Adhes. Sci. Technol. 33 (24) (2019) 2661-2683.

Ukwatta, A.; Mohajerani, A. Characterisation of fired-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks. Constr. Build. Mater. 142 (2017) 11–22.

Boukhelkhal, Dj.; Boukendakdji, O.; Kenai, S.; Kadri, E.H. Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC.Adv. Conc. Const. 6 (1) (2018) 69-85.

Guendouz, M.; Boukhelkhal, Dj.; Bourdot, A. Recycling of Floor Tile Waste as Fine Aggregate in Flowable Sand Concrete. Advances in Green Energies and Materials Technology. Springer Proceedings in Energy. Springer, Singapore, 2021.

Guendouz, M.; Boukhelkhal. Dj. Physical and mechanical properties of cement mortar made with brick waste. MATEC Web of Conferences. 149 (2018) pp. 01077.

Marescotti, A.; Belletti, G. Differentiation strategies in coffee global value chains through reference to territorial origin in Latin American countries. Cult. Hist. Dig. J. 5 (1) (2016) 1-14.

Kua, T.A. Application of Spent Coffee Ground as a Road Subgrade Construction Material. Phd thesis, Swinburne University Australie, 2017.

Kondamudi, N.; Mohapatra, S.K.; Misra, M. Spent coffee grounds as a versatile source of green energy. J. Agric. Food. Chem. 56 (2008) 11757-11760.

Gomes, T.; Pereira, J.A.; Ramalhosa, E. ; Casal, S. ; Baptista, P. Effect of fresh and composted spent coffee grounds on lettuce growth, photosynthetic pigments and mineral composition. Agroingeniería VII and Iberian Congress of Horticultural Science. 2013.

Koji, Y.; Mitsuaki, K.; Taiji, F.; Kazuya, I.; Rie, S.; Watanabe, Y.; Iijima. M. Field Evaluation of Coffee Grounds Application for Crop Growth Enhancement, Weed Control, and Soil Improvement. Plant. Prod. Sci. 17(1) (2014) 93-102.

Ching, S.L.; Yusoff, M.S.; Aziz, H.A.; Umar, M. Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination. 279 (2011) 225-234.

Castro, C.S.; Abreu, A.L.; Silva, C.L.T.; Guerreiro, M.C. Phenol adsorption by activated carbon produced from spent coffee grounds. Wat. Sci. Tech. 64 (2011) 2059-2065.

Yen, W.J.; Wang, B.S.; Chang, L.W.; Duh, P.D. Antioxidant properties of roasted coffee residues, J. Agric. Food. Chem. 53 (2005) 2658-2663.

Banu, J.R.; Kavitha, S.; Kannah, R.Y.; Preethi, K.M.D.; Atabani, A.E.; Kumar, G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bio. Tech. 302 (2020).

Massaya, J.; Pereira, A.P.; Mills-Lamptey, B.; Benjamin, J.; Chuck, C.J. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorization approaches. Biop. F. Proc. 118 (2019) 149–166.

J. Park, B. Kim, J. W. Lee. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bio. Tech. 221 (2016) 55-60.

Hong Tian H., Zhou T., Huang Z., Wang J., Cheng H., Y. Yang, Integration of spent coffee grounds valorization for co-production of biodiesel and activated carbon: An energy and techno-economic case assessment in China, J. Clean. Prod. 324 (2021) 129187

Atahu, M.K.; Saathoff, F.; Gebissa, A. Effect of coffee husk ash on geotechnical properties of expansive soil. Inter. J. Cur. Res. 9 (2) (2017) 46401-46406.

Arulrajah, A.; Kua, T.A.; Phetchuay, C.; Horpibulsuk, S.; Mahghoolpilehrood, F. Spent coffee grounds-fly ash geopolymer used as an embankment structural fill material. J. Mater. Civ. Eng. 28 (5) (2016) 1-8.

Arulrajah, A.; Maghoolpilehrood, F.; Disfani, M.M.; Horpibulsuk, S. Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. J. Clean. Prod. 72 (2014) 181-186.

Zuorro, A.; Lavecchia, R. Spent coffee grounds as a valuable source of phenolic compounds and bioenergy .J. Clean. Prod. 34 (2012) 49–56.

Saberian M., Li J., Donnoli A., Bonderenko E., Oliva P., Gill B., Lockrey S., Siddique R., Recycling of spent coffee grounds in construction materials: A review, J. Clean. Prod. 289 (2021) 125837

Demissew, A.; Fufa, F.; Assefa, S. Partial replacement of cement by coffee husk ash for C-25 concrete production. Sci. Tech. 10 (1) (2019) 12-21.

Lin, L.K. ; Yu, S.I. ; Taiw. The possibility research of applying coffee residue into concrete material. J. Env. Eng. Assoc. 21(2) (2010) 1-14.

Hsu, Y.S. The application of coffee residue ash as into concrete metrical. Master Thesis, National Taipei University of Technology, Taipei, 2010.

Almeida, A.C.; Silva, M.A.L.; Abreu, Q.C.; Martins, A.L.S.; Ribeiro, S.P.; Pereira, C.S.S. Evaluation of Partial Sand Replacement by Coffee Husks in Concrete Production. J. Env. Sci. Eng. B, 8 (2019) 129-133.

Lachheb, A.; Allouhi, M.; El Marhoune, R. ; Saadani, T. ; Kousksou, A. ; Jamil, M. ; Rahmoune, O. ; Oussouaddi, L. Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study J. Clean. Prod. 209 (2019) 1411-1419.

Fonseca, B. S.; Vilao, A.; Galhano, C.; Simao, J.A.R. Reusing coffee waste in manufacture of ceramics for construction, Advances in Applied Ceramics. Adv. Appl. Cer. 113 (3) (2014) 159-166.

Andreola, F.; Borghi, A.; Pedrazzi, S.; Allesina, G.; Tartarini, P.; Lancellotti, I.; Barbieri, L. Spent Coffee Grounds in the Production of Lightweight Clay Ceramic Aggregates in View of Urban and

Agricultural Sustainable Development Mater. 12 (2019) 3581, 1-11.

Jaddu, S.; Madhuri, R.; Reddam, R.; Wagh, E.D. Studies on Utilization of Coffee Waste. Inter. J. Eng. Tren. Technol. 39(4) (2016) 226-231.

Velasco, P.M.; Mendívil, M.A.; Morales, M.P.; Munoz, L. Eco-fired clay bricks made by adding spent coffee grounds: a sustainable way to improve buildings insulation. Mater. Str. 49 (2016) 641-650.

Soares, L.D.S.; Maia, A.A.D.; Moris, V.A.S.; De Paiva, J.M. F. Study of the effects of the addition of coffee grounds and sugarcane fibers on thermal and mechanical properties of briquettes. J. Nat. Fib. (2019) 1-9.

Eliche-Quesada, D. ; Perez-Villarejo, L. ; Iglesias-Godino, F.J. ; Martínez-García, C.; Corpas-Iglesias, F.A. Incorporation of coffee grounds into clay brick production. Adv. Appl. Cer. 110 (4) (2011) 225-23.

Kadir, A.A.; Hinta, H.; Sarani, N.A. ARPN. The utilization of coffee waste into fired clay brick. J. Eng. Appl. Sci. 10 (15) (2015) 6289-6292.

Lin, L.K.; Kuo, T.M.; Hsu, Y.S. J. Mater. Cycles .Waste. Manag. 18 (2016) 541–551.

Charai M., Horma O., El Hammouti A., Mezrhab A., Karkri M., Thermophysical characteristics of cement-based mortar incorporating spent coffee grounds, Materials Today: Proceedings 57 (2022) 867–870

Bederina, M.; Khenfer, M.M.; Dheilly, R.M.; Queneudec, M. Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cement. Concre. Res. 35 (2005) 1172–1179.

Jiang, C.; Guo, W.; Chen, H.; Zhu, Y. Effect of filler type and content on mechanical properties and microstructure of sand concrete made with superfine waste sand. Constr. Build. Mater. 192 (2018) 442-449.

Belhadj, B.; Bederina, M.; Benguettache, K.; Queneudec, M. Effect of the type of sand on the fracture and mechanical properties of sand concrete. Adv. Concr. Cons. 2(1) (2014) 13–27.

Boucedra, A.; Bederina, M.; Ghernouti, Y. Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates. Constr. Build. Mater. 256 (2020) 119447.

Bederina, M.; Marmoret, L.; Mezreb, K.; Khenfer, M.M.; Bali, A.; Queneudec, M. Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modeling. Constr. Build. Mater. 21 (2007) 662–668.

Guendouz, M; Boukhelkha,Dj. Physical, mechanical and thermal properties of Crushed Sand Concrete containing Rubber waste MATEC Web of Conferences, 149, 01076 (2018).

Belhadj, B.; Bederina, M.; Makhloufi, Z.; Goullieux, A.: Quéneudec, M. Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Ener. Build. 87 (2015) 166–175.

Guendouz, M.; Boukhelkhal, Dj.; Bourdot, A.; Babachikh, O.; Hamadouche, A. The effect of ceramic wastes on physical and mechanical properties of eco-friendly fowable sand concrete Ceramic Materials. IntechOpen. 10, 2 (2020).

Sablocrete, Sand concrete, characteristics and use practices, Paris: Presses of the National School of Bridges and Chaussees LCPC, 1994.

NF P18-459. Tests for fresh concrete - Part 2: slump test. AFNOR. 2010.

NF EN 993-15. Tests for fresh concrete - Part 6: density. AFNOR. 2005.

Lo, T.Y.; Cui, H.Z. ; Tang, W.C. ; W. M. The effect of aggregate absorption on pore area at interfacial zone of lightweight concrete. Constr. Build. Mater. 22 (2008) 623–628.

Korjenic, A.; Petranek, V.; Zach, J.; Hroudova. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. J. Energy.Build.43 (2011) 2518-2523.

Guendouz, M.; Debieb, F.; Boukendakdji, O.; Kadri, E.H.; Bentchikou, M.; Soualhi, H. Use of plastic waste in sand concrete. J. Mater. Env. Sci. 7 (2) (2016) 382-389.

Senhadji, Y.; Siad, H.; Escadeillas, G.; Benosman, A.S.; Chihaoui, R.; Mouli, M.; Lachemi, M. Physical, mechanical and thermal properties of lightweight composite mortars containing recycled polyvinyl chloride. Constr. Build. Mater.195 (2019) 198–207.


Refbacks

  • There are currently no refbacks.