Influence of morphological factors on the microclimate in urban public spaces A study for hot and arid climate

M. Sebti, Dj. Alkama


Abstract:The urban microclimate is influenced by several morphological parameters in urban public space. The height of buildings, the width of the streets surrounding this space and the orientation of its major axis control the absorption and reflection of solar radiation.

These morphological parameters and others acting on the ambient temperature and determine the thermal quality of these spaces. The objective of this study is to characterize the thermal quality in outdoor urban spaces, more specifically in plaza, and to determine the influence of morphological factors on the modification of the urban microclimate.

We also try, to discover, through the study of four plazas, which one of theme it presents the good or the bad quality in terms of thermal environment, while trying to conclude the conditions generating this thermal quality; similarly, attempts are being made to find solutions that improve microclimatic features in plaza.

Full Text:



Latini, G.; Cocci, Grifoni R.; Tascini, S. Thermal Comfort and Microclimates in Open Spaces. Buildings XI (2010) 1-10.

Zhang, X.; Zhang, Y., Zang, Q.; Yu, M.; Tong, Z. Comparative cognition of microclimate of different types of open spaces. In 24th International Conference on Geoinformatics (2016) 1-7. Doi: 10.1109/GEOINFORMATICS.2016.7578970.

Xu, T.; Tong, Z.; Xu, S. Integration of Microclimate into the Multi-Agent System Simulation in Urban Public Space. Smart Cities 2 (2019) 421-432. Doi: 10.3390/smartcities2030026.

Nikolopoulou, M.; and Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment 42 (2007): 3691-3707. DOI:10.1016/J.BUILDENV.2006.09.008.

Bourbia, F.; Boucheriba, F. Impact of street design on urban microclimate for semi-arid climate

(Constantine). Renewable Energy 35 (2010) 343–347. DOI: 10.1016/j.renene.2009.07.017

Johansson, E.; Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez; Morocco. Building and Environment 41 (2006) 1326–1338.

Akbari, H.; Pomerantz, M.; Taha, H.; Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy 70 (2001) 295-310.

Bouyer, J. Modélisation et simulation des microclimats urbains Étude de l’impact de l’aménagement urbain sur les consommations énergétiques des bâtiments. Thèse de doctorat; école doctorale: science pour l’ingénieur; géosciences; architecture. École Nationale Supérieure d’Architecture de Nantes. Université de Nantes (2009) 325 pages.

Tumini, I.; Rubio-Bellido C. Measuring Climate Change Impact on Urban Microclimate: A Case Study of Concepción. Procedia Engineering 161 (2016) 2290 – 2296.

Sebti, M.; Alkama, Dj.; Bouchair, A. Assessment of the effect of modern transformation on the traditional settlement ‘Ksar’ of Ouargla in southern Algeria. Frontiers of Architectural Research 2 (2013) 322–337.

Chatzinikolaou, E.; Chalkias C.; Dimopoulou E. Urban microclimate improvement using envi-met climate model. The International Archives of the Photogrammetry; Remote Sensing and Spatial Information Sciences XLII-4 (2018) 69-76.

Shahab, K.; Sabarinah, Sh.A.; Megawati O.; Norhati, I. Urban outdoor thermal comfort prediction for public square in moderate and dry climate. In IEEE Symposium on Business; Engineering and Industrial Applications (ISBEIA); Langkawi; Malaysia. (2011) 308-313. DOI: 10.1109/ISBEIA.2011.6088827

Othman, A.A.; Abdin, A.R.; Amin, A.A.; Mahmoud, A.H. A bioclimatic design approach for the urban: open space design at business parks. Journal of engineering and applied science 67 (2020) 1883-1901. Faculty of engineering, Cairo university

Teli, D.; Axarli, K. Implementation of bioclimatic principles in the design of urban open spaces: microclimatic improvement for the cooling period of an open space adjacent to the sea. In 25th Conference on Passive and Low Energy Architecture (2008).

Nikolopoulou, M. Designing Open Spaces in the Urban Environment: a Bioclimatic Approach. Centre for Renewable Energy Sources (2004).

Shahab, K.; Sh. Ahmada, S.; Saberi, A. Microclimatic Conditions of an Urban Square: Role of built environment and geometry. Procedia - Social and Behavioral Sciences 170 (2015) 718– 727.

Oke, TR. Boundary layer climates. London: Methuen (1987).

Dimoudi, A.; Nikolopoulou, M. Vegetation in the Urban Environment: Microclimatic Analysis and Benefits. Energy and Buildings 35 (2003) 69-76. Doi: 10.1016/S0378-7788(02)00081-6.

Gaitani, N.; Spanou, A.; Saliari, M.; Synnefa, A.; Vassilakopoulou, K.; Papadopoulou, K.; Pavlou, K.; Santamouris, M.; Papaioannou, M.; Lagoudaki, A. Improving the microclimate in urban areas: a case study in the centre of Athens. Building Services Engineering Research and Technology 32 (2011) 53–71. DOI: 10.1177/0143624410394518


  • There are currently no refbacks.