Ultrasonically assisted improved sorption of cationic dye by a cheaper sorbent

H. Ghodbane

Abstract


Abstract: The goal of this investigation was to evaluate the sorption of malachite green (MG) from aqueous solutions using pumpkin seed peels in the absence of mixing and under low frequency ultrasound. Batch experiments were performedto examine the effect of operating parameters such as sorbent dose (0.05- 0.6 g), initial dye concentration (5– 20 mg/L), initial solution pH (2–8), temperature (25°C–45°C) and ionic strength (0–1 g/L).The following data reveal the quantum of sorption of MG was greatly enhancedunder ultrasound conditions.  Dyestuff sorption when ultrasound is used was significantly increased by increasing the initial sorbent concentration and by reducing the sorbent quantity.The ionic force hinders the sorption of the pollutant.The basic pH was found to be the most advantageous for the sorption of MG.At pH 2, sorption is low due to competition between H+ ions and VM molecules to occupy the sorption sites. At this pH, the pumpkin seed surface is positively charged (pH < pHPZC =4.92).The sorption kinetic data were found to be well-represented bythe pseudo-second-order rate equation, both in the absence and presence of ultrasound (r ≥ 0.996). Analysis of the sorption kinetics results reveals that film and particle diffusion are successful sorption mechanisms. Additionally, the sorptionisotherm data were analyzed by two isotherm models Langmuir and  Freundlich models. Equilibrium data can be well described by the Langmuir model for both methods,, showing maximum monolayer sorption capacity (qm) of 8,9445 and 15,0375 mg/g at21°C, respectively.


Full Text:

PDF

References


Choy, K. K. H.; Porter, J. F.; McKay, G.; Single andmulticomponent equilibrium studies for the adsorption ofacidic dyes on carbon from effluents. Langmuir 20 (2004) 9646–9656.

Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C.; Removal of C. I. Basic Green 4 (Malachite Green) fromAqueous Solutions by Adsorption Using Cyclodextrinbased CyclodextrinbasedAdsorbent: Kinetic and Equilibrium Studies”. Separation and Purification Technology 53 (2007) 97-110.

Thompson, L. H.; Doraiswamy, L. K..; Sonochemistry: science and engineering. Industrial & Engineering Chemistry Research 38 (1999) 1215–1249.

Adewuyi, Y. G.; Sonochemistry: Environmental Science and Engineering Applications. Industrial & Engineering Chemistry 40 (2001) 4681–4715.

Suslick, K. S.; Crum, L. A.; Sonochemistry andsololuminescence. In Encyclopidia of acoustics in: M.J.Crocker (Ed.), John Wiley & Sons (1997) pp. 271–282.

Caili, F. U. ; Huan, S. ; Quanhong, L. I.; A review onpharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition 61 (2006)70–77.

Norfezah, M. N. ; Hardacre, A. ; Brennan, C. S.; Comparison of waste pumpkin material and its potential usein extruded snack foods. Revista de Agroquimica y Tecnologia de Alimentos 17 (2011) 367–373.

Popović, S. ; Peričin, D. ; Vaštag, ž. ; Popović, L. ; Lazić, V.; Evaluation of edible film-forming ability of pumpkin oilcake; effect of pH and temperature. food hydrocolloids 25 (2011) 470–476.

Pham, T. T.; Tran, T. T. T.; Ton, N. M. N.; Le, V. V. M.; Effects of pH and Salt Concentration on FunctionalProperties of Pumpkin Seed Protein Fractions. Journal of food processing and preservation (2016). http://dx.doi.org/10.1111/jfpp.13073.

Jun, H. I.; Lee, C. H.; Song, G. S.; Kim, Y. S.; characterization of the pectic polysaccharides from pumpkin peel. LWT - Food Science and Technology 39 (2006) 554–561.

Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M.; Valorization of biomass: deriving more value from waste. Science 337(2012) 695–699.

Hamdaoui, O.; Saoudi, F. ; Chiha, M. ; Naffrechoux, E.; Sorption of malachite green by a novel sorbent, dead leaves, of plane tree: Equilibrium and kinetic modeling. Chemical engineering journal 143(2008)73–84.

Mason, T. J.; Lorimer, J. P.; Bates, D. M.; Quantifyingsonochemistry: Casting some light on a ‘black art’. Ultrasonics 30 (1992) 40–42.

Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi. A.; Shojaipour, F.; Soylak, M.; Purkait, M. K..; Anovel acorn based adsorbent for the removal of brilliant green. Desalination 281(2011) 226–233.

Guechi, E. K..; Hamdaoui, O.; Cattail leaves as a novelbiosorbent for the removal of malachite green from liquidphase: data analysis by non-linear technique. Desalination and Water Treatment 51(2013) 3371–3380.

Ahmad, R.; Kumar, R.; Adsorptive removal of congored dye from aqueous solution using bael shell carbon. Journal of Environmental Management 91(2010)1032–1038.

Adewuyi, Y.G.; Sonochemistry: environmental science and engineering applications. Industrial & Engineering Chemistry Research 40(2001) 4681–4715.

Hamdaoui, O.; Naffrechoux, E.; An investigation of themechanisms of ultrasonically enhanced desorption, AIChE Journal 53(2007) 363–373.

Wang, X. S.; Zhou, Y.; Jiang, Y.; Sun, C.; The removal ofbasic dyes from aqueous solutions using agricultural byproducts. Journal of Hazardous Materials 157 (2008) 374–385.

Guechi, E. K..; Hamdaoui, O.; Sorption of malachitegreen from aqueous solution by potato peel: kinetics andequilibrium modeling using non-linear analysis method. Arabian Journal of Chemistry (2016) S416–S424.

Weng, C. H.; Lin, Y.T.; Tzeng, T.W.; Removal ofmethylene blue from aqueous solution by adsorption ontopineapple leaf powder. Journal of Hazardous Materials 70 (2009) 417–424.

Lagergren, S.; Zur Theorie der SogenanntenAdsorption Gelöster Stoffe, Kungliga SvenskaVetenskapsakademiens. Handlingar 24 (1898) 1–39.

Ho, Y. S.; McKay, G.; Sorption of dye from aqueous solution by peat. Chemical engineering journal 70 (1998) 115–124.

Ho, Y. S.; McKay, G.; The kenitics of sorption of divalent metal ions onto sphagnum moss peat. Water Research 34(2000) 735–742.

Weber, W. J.; Morris, J. C.; kenitics of adsorption on Carbon from Solutions. Journal of the Sanitary Engineering Division 89 (1963) 31–59.

Langmuir, I.; The adsorption of gases on plane surfacesof glass, mica and platinum. Journal of the American Chemical Society 57 (1918) 1361–1403.

Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T.; Pore and Solid Diffusion Kinetics in Fixed Bed Adsorptionunder Constant Pattern Conditions. Industrial & Engineering Chemistry Fundamentals 5 (1966) 212–223.

Freundlich, H. M. F.; Over the Adsorption in Solution. Journal of Physical Chemistry 57 (1906) 385–470.

Tahir, S. S.; Rauf, N.; Removal of cationic dye fromaqueous solutions by adsorption onto bentonite clay. Chemosphere 63(2006) 1842–1848.

Zhang, J.; Li, Y.; Adsorption ofmalachite green from aqueous solution onto carbonprepared from Arundo donax root. Journal of Hazardous Materials 150(2008) 774–778.

Khattri, S. D.; Singh, M. K..; Removal of malachite greenfrom dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials 167 (2009) 1089–1094.

Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P.; Adsorption thermodynamics, kinetics and isosteric heat ofadsorption of malachite green onto chemically modifiedrice husk, Desalination 265 (2011) 159–168.

Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I.; Kumar, R.; Insight into adsorption equilibrium, kinetics andthermodynamics of Malachite Green onto clayey soil ofIndian origin, , CLEAN —Soil, Air, Water. 38(2010) 437–445.

Naseeruteen, F.; Hamid, N. S. A.; Suah, F. B. M.; Ngah, W.S.W.; Mehamod, F. S.; Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. International Journal of Biological Macromolecules 107( 2018) 1270-1277.

Arumugama, T. K..; Krishnamoorthy, P.; Rajagopalan, N. R.; Nanthini, S.; Vasudevan, D.; Removal of malachite green from aqueous solutions using a modified chitosan composite. Journal of Biological Macromolecules 128 (2019) 655–664.

Alene, A.N.; Abate, G.Y.; Habte, A.T.; Getahun. D.M., Utilization of a Novel Low-Cost Gibto (Lupinus Albus) Seed Peel Waste for the Removal of Malachite Green Dye: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry (2021), Article ID: 6618510. https://doi.org/10.1155/2021/6618510.

Hajati, S.; Ghaedi, M.; Yaghoubi, S.; Local cheep and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: Optimization by surface response methodology.Journal of Industrial & Engineering Chemistry 21(2015)760-767.


Refbacks

  • There are currently no refbacks.