Effect of olive mill wastewater spreading on the rhizosphere potassium and the growth of an intercropping system triticale-forage pea

S. Mouas Bourbia, S. Sid Ali, H. Kefsi, D. Issaoun, G. Yahiaoui Tibiche, D. Louni, O. Omouri

Abstract


Abstract: In order of olive mill wastewater (OMW) valorization, a greenhouse study was conducted to investigate the OMW effects on potassium content in the rhizosphere and on the growth of an intercropping system triticale-forage pea. The used soil is a calcaric cambisol with a silt-clay texture. Despite high EC (10.8 dS.m-1) of OMW, bulk and rhizospheric soil of two species in monocropping and intercropping systems did not show a salinization after 45 days of cropping. The bulk soil and rhizosphere of monocropping and intercropping systems has been enriched in KNH4+ after OMW spreading. However, intercropping induced a higher KNH4+depletion in the rhizosphere compared to monocropping systems. No negative effects of OMW application were observed on the seeds emergence and the growth of two species. In general, the root system of cereal has more benefit from intercropping and OMW application. The valorization of OMW by spreading on soil of mixed forage crop would be a sustainable agro-ecological solution to the environmental nuisances caused by the uncontrolled release of OMW.

Full Text:

PDF

References


Bargougui, L. ; Guergueb, Z. ; Chaieb, M. ; Braham, M. ; Mekki, A. Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater. Agricultural Water Management 212 (2019) 60-67.

https://doi.org/10.1016/j.agwat.2018.08.011.

Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and restoration of degraded soils and for crops managed with sustainable systems. Agricultural Water Management 190 (2017) 55-64.https://doi.org/10.1016/j.agwat.2017.05.008.

Mouas-Bourbia, S.; Kana, S.; Mahmoudi, K.; Amokrane, K.; Louni, D.; Lardjane, N.; Boudiaf Nait Kaci, M.; Issaoun, D.; Yahiaoui Tibiche, G. Valorization of by-products from the olive oil extraction: evolution of chemical and spectroscopic characteristics during composting. Algerian J. Env. Sc. Technology 2:2 (2016) 20-25.

Cakmak, I. Potassium for better crop production and quality. Plant Soil 335 (2010), 1–2

https://doi.org/10.1007/s11104-010-0534-8.

Hinsinger, P.; Betencourt, E.; Bernard, L.; Brauman, A.; Plassard, C.; Shen, J.; Tang, X.; Zhang, F.; P. for Two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped Species, Plant Physiology V. 156 (3) (2011) 1078- 1086. http://doi.org/10.1104/pp.111.175331.

Li, L.; Li, S. M.; Sun, J. H.; Zhou, L. L., Bao, X. G., Zhang, H. G.; Zhang, F.S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings the National Academy of Sciences 104 (27) (2007) 1192-1196.https://doi .org/10.1073/pnas.0704591104.

Betencourt, E.; Duputel, K.; Colomb, B.; Desclaux, D.; Hinsinger P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry (46) (201)2181190. https://doi.org/10.1016/j.soilbio.2011.11.015.

Bedoussac, L. Eco-functional Intensification by Cereal-Grain Legume Intercropping in Organic farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration. In: Bellon S., Penvern S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7927-3.

Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D., White, P.J. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206 (1) (2015) 107-

https://doi.org/10.1111/nph.13132.

Belel, M. D.; Halim, R. A.; Rafii, M. Y.; Saud, H. M. Intercropping of corn with some selected legumes for improved forage production: A review. Journal of Agricultural Science 6 (3) 48 (2014). http://dx.doi.org/10.5539/jas.v6n3p48.

Belaqziz, M.; El-Abbassi, A.; Agrafioti, E.; Galanakis, C. M. Agronomic application of olive mill waste water: effects on maize production and soil properties. Journal of environmental Management 171 (2016) 158-165.

https://doi.org/10.1016/j.jenvman.2016.02.006.

Magdich, S.; Rouina, B.B.; Ammar, E. Olive Mill Wastewater Agronomic Valorization by its Spreading in Olive Grove. Waste, BiomassValor 11 (2020)1359–1372. https://doi.org/10.1007/s1264-018-0471-y

Ros de Ursinos, F. ; Berndt, L. ; Geissen, K. ; Kachouri, M. ; Klimm, E. Les expériences méditerranéennes dans le traitement et l’élimination des eaux résiduaires des huileries d’olives. Coopération Tunisie-Allemagne (1996) 48 p.

Bonari, E.; Macchia, M.; Angelini, L. G.; Ceccarini, L. The waste waters from olive oil extraction: their influence on the germinative characteristics of some cultivated and weedspecies. Agricoltura mediterranea (Ospedaletto)123 (4) (1993) 273-280.

Jackson, M.L. Soil Chemical Analysis. Asia

Publishing House, Bombay, India, (1967); 258 p

Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management 119 (2013)43-53.https://doi.org/10.1016/j.agwat.2012.12.009.

Mechri, B.; Mariem, F. B.; Baham, M.; Elhadj, S. B.; Hammami, M. Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 40 (1) (2008)152

https://doi.org/10.1016/j.soilbio.2007.07.020

Ben Rouina, B.; Gargouri, K.; Abichou, M.; Rhouma, A.; Magdich, S.; Jilani, S. L'épandage des margines sur les terres agricoles : résultats et gestion pratique. 7èmes Journées Méditerranéennes de l’Olivier.Meknès, Morocco (2014).

Magdich, S.; Ahmed, C. B.; Jarboui, R.; Rouina, B. B.; Boukhris, M.; Ammar, E. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere 93 (9) (2013) 1896-1903.

https://dio.org/10.1.16/jchemosphere.2013.06.066.

Sierra, J.; Martí, E.; Garau, M.A.; Cruañas, R. Effects of the agronomic use of olive oil mill wastewater: field experiment. Science of the total environment 278 (1-2) (2007) 90-94.

https://doi.org/10.1016/j.scitotenv.2007.01.009

Mouas-Bourbia, S. ; Barré, P. ; Lamara Mahamed, S. ; Kerkoud, F. ; Issaoun, D. ; Derridj A. ; Bruce, V. Rhizospheric effect on soil chemical properties: case of olea europaea L. groves at two contrasting vegetative periods. Agrochimica (3) 3 (2020) 297-313.doi: 10.12871/00021857202037.

Mouas-Bourbia, S.; Barré, P.; Issaoun, D.; Ait Abdelkaoui, S.; Bellabiod, F.; Nait Kaci, M.; Yahiaoui Tibiche, G.; Omouri, O.; Velde, B. Short-term effect of olive mill wastewater spreading on potassium bioavailability and clay mineralogy in bulk soil and rhizophere of olive trees. Agrochimica 65 (2021). doi 10.12871/00021857202116.

Maltais-Landry, G. Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant Soil 394 (2015) 139–154.https://doi.org/10.1007/s11104-015-2518-1.

Zhou, L. L.; Cao, J. Zhang, E.S.; Li, L. Rhizospheric acidification of faba bean, soybean and maize.Science of total environment 407(14) (2009)4356-4362. https://doi.org/10.1016/j.scitotenv.2009.02.006.

Cheng, Y.; Howieson, J. G.; O’hara, G. W.; Watkin, E. L. J.; Souche, G.; Jaillard, B.; Hinsinger, P. Proton release by roots of Medicago murex and Medicago sativa growing in acidic conditions, and implications for rhizosphere pH changes and nodulation at low pH. Soil Biology and Biochemistry, 36 (8), 1357-1365 (2004).https://doi.org/10.1016/j.soilbio.2004.04.017.

Li, L.; Tilman, D.; Lambers, H.; Zhang, F. S. Plant diversity and over yielding: insights from belowground facilitation of intercropping in agriculture. New phytopathologist 203 (1) (2014) 63-69. https://doi.org/10.1111/nph.12778.

Zhang, F.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and soil 248 (1) (2003) 305-312 https://doi.org/10.1023/A:1022352229863

Ndakidemi, P.A. Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems. African Journal of Biotechnology 5 (25) (2006).

Li, N.Y.; Li, Z.A.; Zhuang, P.; Zou, B.; Mc Bride, M. Cadmium Uptake From Soil by Maize With Intercrops. Water Air, Soil Pollution 199 (2009) 45–56. https://doi.org/10.1007/s11270-008-9858-x.

Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops–a field study employing 32P technique. Plant and Soil 236 (1) (2001) 63-74. https://doi.org/10.1023/A:1011909414400.

Ros de Ursinos, F. ; Berndt, L. ; Geissen, K. ; Kachouri, M. ; Klimm, E. Les expériences méditerranéennes dans le traitement et l’élimination des eaux résiduaires des huileries d’olives. Coopération Tunisie-Allemagne (1996) 59p.

Dakhli, R.; Maalej, E. M. Olive mill waste water spreading in southern Tunisia: effects on a barley crop:(Hordeum Vulgare. L). Journal of Agriculture and Environment for International Development (JAEID), 111(1) (2017) 87-103. https://doi.org/10.12895/jaeid.20171.552.

Inal, A.; Gunes, A.; Zhang, F.; Cakmak, I. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant physiology and biochemistry 45 (5) (2007)350-356. https://doi.org/10.1016/j.plaphy.2007.03.0


Refbacks

  • There are currently no refbacks.