Effect of Titanium Dioxide on the Properties of High-density Polyethylene/Casuarina Composite

K. Boumerdassi, H. Aksas, S. Bouhelal


This study focuses on the development and characterization of macro-nano-composites with a high-density polyethylene matrix and fillers of plant and mineral origin: casuarina fiber and titanium dioxide. The latter is used at different percentages. After the casuarina fiber treatment, the composite specimens were produced by internal mixer/compression. The study is essentially based on highlighting the effects of titanium dioxide levels on the structural, mechanical and thermal properties of composites. The analysis by optic microscope highlighted the dispersion and the distribution of the charges in the matrix for the elaborated composites. Differential scanning calorimetry confirmed that the crystallinity degree of macro-nano-composite increases as a function of titanium dioxide rate. Mechanical tests have shown that the effect of titanium dioxide on the stiffness of pure polyethylene is more remarkable than that of titanium dioxide on the polyethylene/casuarina composite and that the polyethylene/titanium dioxide nanocomposite has better mechanical properties than polyethylene/casuarina/titanium dioxide.

Full Text:



Malha M. (2013) Implementation, Characterization and Modeling of Composite Materials: Thermoplastic Polymer Reinforced by Doum Fibers. Doctoral thesis, Faculty of Sciences Rabat, Mohammed V. University, Agdal.

Sathyanarayana S, Hübner C (2013) Thermoplastic nanocomposites with carbon nanotubes. Struct Nanocomposites: 19-60. Doi: 10.1007/978-3-642-40322-482

Ludovic D. (2010) Study of the behavior of high-density polyethylene under ultraviolet irradiation or mechanical stress by fluorescence spectroscopy. Doctoral thesis, University of La Rochelle.

Xie Y, Callum Hill AS, Xiao Militz ZH. Mai C (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Appl Sci and Manufacturing. 41: 806-819. Doi: 10.1016/j.compoitesa.2010.03.005

Deka K P, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites. 42:2117-2125. Doi.10.1016/j.compositesa.2011.09.023

Hayle ST, Gonfa GG (2014) Synthesis and characterization of titanium oxide nanomaterials using sol-gel method. Am J Nano Sci Nano Technol.; 2 (1): 1-7. Doi: 10.11648/j.nano.20140201.11

Filpo G D, Palermo A M, Rachielle F(2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Inter Biodeter Bio.; 85: 217-222. Doi.org/10.1016/j.ibiod.2013.07.007

Nguyen VG, Thai H, Mai DH, Tran HT, Tran D L, Vu M T. (2013) Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Composites: Part B.; 45: 1192-1198. Doi.org/10.1016/j.compositesb.2012.09.058

Aydemir D, Uzun G, Gumus H, Yildiz S, Gumus S, Bardak T, Gunduz G. (2016) Nanocomposites of polypropylene/nano titanium dioxide: effect of loading rates of nano titanium dioxide. Mater Sci.; 22(3): 364-369. Doi:10.5755/j01.ms.22.3.8217

Sirisinha K, Meksawat D. (2004) Comparison in Processability, Mechanical and Thermal Properties of Ethylene-Octene Copolymer Crosslinked by Different Techniques, J Appl polym Sci.; 93: 1179-1185. Doi.10.1002/app.20554

Baatti A. (2018) Synthesis and development of nanoparticles for the manufacture of thermoplastic-based nanocomposites. Doctoral theses, University of Quebec at Chicoutimi.

Oksman K, Clemons C. (1998) Mechanical properties and morphology of impact modified polypropylene-wood flour composites. J App Polym Sci.; 67:1503-1513.Doi.org/10.1002/(SICI)1097-4628(19980228)67:9<1503::AID-APP1>3.0. CO.

Rong M, Zhang M, Ruan W. (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Mater Sci and Tech.; 22(7): 787-796. Doi.org/10.1179/174328406X101247

Wang K H Choi, M H, Koo C M, Choi Y S, Chung IJ (2001). Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polym J.; 42: 9819-9826. Doi.org/10.1016/S0032-3861 (01)00509-2

Wu Q, Lei Y, Clemons CM, Yao F, Xu Y, Lian K. (2007) Properties of HDPE/clay/wood nanocomposites. J Plast Tech.; 27:108-115. Doi: 10.1.701.8347

Mohan TP, Kanny, K. (2011) Water barrier properties of nanoclay filled sisal fiber reinforced epoxy composites. Composites, Part A.; 42: 385-393. doi.org/10.1016/j.compositesa.2010.12.010

Rakesh K, Yakabu M K, Rajesh D A. (2010) Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Composites, Part A.; 41: 1620-1627. Doi.org/10.1016/j.compositesa.2010.07.012

Li TC, Ma J, Wang M, Chauhari W, LiuT, Huang W. (2007) Effect of clay addition on the morphology and thermal behavior of polyamide 6. J Appl Polym Sci.;103: 1191-1199. Doi:10.1002/APP.25378

Han G, Lei Y, Wu Q, Kojima Y, Suzuki S. (2008) Bamboo–fiber filled high density polyethylene composites; effect of coupling treatment and nanoclay. J Polym Environ.; 21:1567-1582. Doi: 10.1007/S10924-008-0094-7

Stark NM. (1997) Effect of Species and Particle Size on Properties of Wood-Flour-Filled Polypropylene Composites. Proceedings of Functional Fillers. Intertech Conference; Dec; San Diego, CA.

Boumerdassi K. (2008) Elaboration and Characterization of Biodegradable Composite with Thermoplastic Matrix and Polysaccharides Reinforcement. Memory of magister, UMBB University, Boumerdes, Algeria.

Wang D, Xuan L, Han G, Wong A H, Wang Q, Cheng W. (2019) Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano-TiO2 particles. Composites Part A.;128:1-10. Doi.org/10.1016/j.compositesa.2019.105674

Wang S, Yu S, Li J, Li S. (2020) Effects of functionalized nano- TiO2 on the molecular motion in epoxy resin-based nanocomposites. Mater.; 13(163): 1-10. Doi: 10.3390/ma13010163

Lei Y, Wu Q, Clemons CM, Yao F, Xu Y. (2007) Influence of nanoclay on properties of HDPE/wood composites. J Appl Polym Sci.; 18:1425-1433. Doi.org/10.1007/s00107-010-0488-9

Ashori A, Nourbakhsh A. (2011) Preparation and characterization of polypropylene/wood flour/nanoclay composites. Eur. J. of Wood and Wood Products.; 69:663-666. Doi.org/10.1007/s00107-010-0488-9

Kord B, Hemmasi A, H, Ghasemi I. (2011) Properties of PP/wood flour/organomodified montmorillonite nanocomposites. Wood Sci Technol.; 45:111-119. Doi.org/10.1007/s00226-010-0309-7

Ruijun Gu, Bohuslav Kokta V, Michalkova D,

Dimzoski B, Fortelny I, Slouf M, Krulis Z. (2010) Characteristics of wood–plastic composites reinforced with organo-nanoclays. J. Reinf. Plast. Composites.; 29: 3566-3586. Doi:10.1177/0731684410378543

Biplab Deka K, Maji TK. (2010) Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamiteskarka nanocomposite. Composites Sci Technol.; 70: 1755-1761. Doi.org/10.1016/j.compscitech.2010.07.010

Ravindra Reddy C, Pouyan Sardashti A, Leonardo Simon C (2010). Preparation and characterization of polypropylene–wheat straw–clay composites. Composites Sci. Technol.; 70: 1674-1680. Doi.org/10.1016/j.compscitech.2010.04.021

Han G, Lei Y, Wu Q, Kojima Y, Suzuki S. (2008) Bamboo–Fiber Filled High Density Polyethylene Composites: Effect of Coupling Treatment and Nanoclay. J polym environ.; 16(2):123-130. Doi.org/10.1007/s10924-008-0094-7

Kord B, Hemmasi AH, Ghasemi I. (2011) Properties of PP/wood flour/organomodified montmorillonite nanocomposites. Wood Sci Technol.; 45(1): 111-119. Doi.org/10.1007/s10924-008-0094-7

Klason C, Kubat J, Strömvall HE. (1984) The efficiency of cellulosic fillers in common thermoplastics. part 1 Filling without processings aids or coupling agents. Inter. J. Polymeric Mater.; 10:159-187. In Bledzki, A.K. Gassan, J. Prog Poly Sci. 1999; 24: 221-274. Doi.org/10.1080/00914038408080268


  • There are currently no refbacks.